New catalyst produces green hydrogen from seawater
Researchers have designed a novel prototype device that is able to float on the ocean surface to produce hydrogen from seawater.
In summary
- Researchers at Swinburne’s Centre for Translational Atomaterials, in collaboration with Shaanxi Normal University, have developed a catalyst that can produce high-performance solar light-triggered hydrogen from seawater
- They have also developed a prototype device using this catalyst, known as the ‘Ocean-H2-Rig’
Researchers at Swinburne University of Technology’s Centre for Translational Atomaterials, in collaboration with Shaanxi Normal University, have developed a robust single-atom platinum catalyst that can produce high-performance solar light-triggered hydrogen from seawater.
They have also developed a prototype device using this catalyst, known as the ‘Ocean-H2-Rig’.
Hydrogen is one of the cleanest fuels. If it is produced from a clean, renewable energy source, like wind or solar, it can be used as a clean transport fuel, for providing electricity to the grid, and to offset the carbon from manufacturing processes.
In conventional photocatalysts, electrons and holes are separated upon solar radiation to trigger water splitting to hydrogen and oxygen. The separated electrons and holes tend to recombine, which significantly decreases the photocatalytic activity and reduces the hydrogen production efficiency.
The single-atom platinum catalyst developed in this work effectively extracts the photo-generated electrons, thus avoiding unwanted recombination.
Single-atom platinum catalyst helps to extract photo-generated electrons.
Floating prototype equipped with the single-atom platinum catalysts for solar light-triggered hydrogen production directly from seawater.
“In this new work, we have used the single-atom platinum catalyst as the electron extractor. It is synthesised by a scalable and low-cost calcination method, easily produced at large scale,” says Associate Professor Tianyi Ma, lead author of the research paper.
Founding Director of the Centre for Translational Atomaterials, Professor Baohua Jia says the single-atom catalyst has the advantage of easy cycling, reuse and green production.
“It promotes highly efficient hydrogen production with an outstanding quantum yield of 22.2 per cent under LED-550 illumination, which stands among the best catalysts ever reported,” Professor Jia says.
“The high solar‐to‐hydrogen conversion efficiency is what we need for industrial application,” Associate Professor Ma says. “We have designed a novel prototype device that is able to float on the ocean surface for hydrogen production from seawater.”
The research paper is published in Angewandte Chemie International Edition.
-
Media Enquiries
Related articles
-
- Technology
- University
World-first partnership with Adobe drives tech-fluency at Swinburne
Swinburne has become the first Adobe Creative Campus in the world to provide all staff and learners with Adobe Creative Cloud, including Adobe’s full offering of generative AI tools
Tuesday 27 January 2026 -
- Design
- Technology
- Health
- Law
- Education
- Business
- Science
- University
- Engineering
Swinburne moves up in Times Higher Education World University Rankings by Subject 2026
Swinburne University of Technology has performed strongly in the Times Higher Education World University Rankings by Subject 2026, with two subjects moving up the ranks.
Thursday 22 January 2026 -
- Health
Revealing the parental role in preventing childhood internet addiction and how to combat it
New Swinburne-led research has found that the use of mobile devices by primary school-aged children for gaming, social media and streaming significantly increases the risk of internet addiction – and parents are the main influence.
Tuesday 20 January 2026 -
- Technology
- Science
- University
- Aviation
- Sustainability
- Engineering
Swinburne secures AEA funding in aerospace, critical metals, sustainable steel production and protective helmet design
Swinburne University of Technology researchers have secured over $1.6 million in funding from Australia’s Economic Accelerator (AEA) Ignite grants.
Thursday 22 January 2026 -
- Student News
- Science
- Sustainability
Introducing tomorrow’s global science communicators
Start Talking is Swinburne’s unique video-based public speaking competition, exclusively for undergraduate students
Monday 08 December 2025