We collaborate and partner with principal investigators from around Australia and around the world to lead large- and small-scale research projects.

At the Neuroimaging facility here at Swinburne, we also conduct our own methodological research and publish our findings in leading peer-reviewed journals. We support all stages of research from project conception and design, to logistics planning and research grant applications.

In addition, we can offer advice on research ethics and data management. Our expert training in data analysis and computing helps others get the most from our advanced systems and facilities.

Browse our key areas of expertise and learn more about our recent projects:

Multimodal imaging

Despite the high spatial resolution, functional magnetic resonance imaging (fMRI) is extremely limited in its temporal resolution. It’s only sensitive to brain activity changes on the scale of seconds.

And every second, thousands of events happen in the brain. At Swinburne, we can deal with that.

Our magnetoencephalography (MEG) scanner characterises brain activity and directional connectivity on the scale of milliseconds. That’s impossible with fMRI. MEG can also capture neural oscillatory processes that we can’t observe with fMRI.

We’re also developing new data acquisition and analysis methods. A highly novel approach combines MEG with highly detailed characterisation of the structure and integrity of the brain’s white matter fibre tracts. Our 3T MRI scanner measures these.

Researchers can examine the functional consequences of the structure and integrity of the brain's fibre tracts. This includes neural signal transit times, information throughput, delays in processing of sensory feedback, and asynchrony between activity in different brain regions.

Integrating MRI and MEG gives a unique view into how the healthy brain supports a wide range of temporally sensitive cognitive functions. These include:

  • motor control
  • sensorimotor integration
  • speech
  • attention
  • recollection of memories

The approach shows how developmental and age-related changes to brain structure affect these functions. The functions also change after brain insult through trauma and stroke.

The brain has a tremendous ability to recover after acute or progressive brain injury. It can also react to developmental brain impairments.

However, functional recovery often occurs on a different timescale to structural recovery.  This makes it difficult to predict outcomes or to design effective interventions.

Multimodal data sheds light on the interplay between functional and structural connectivity across the whole-brain network. Both researchers and clinicians benefit from that knowledge.

It allows them to improve rehabilitation in varied conditions. These include:

  • stroke
  • traumatic brain injury
  • concussion
  • epilepsy
  • degenerative brain diseases.

We're studying this functional-structural interplay at Swinburne. Our research into magnetoencephalography (MEG) and magnetic resonance imaging (MRI) can make people's lives better.

For example, it’s helping us to understand and improve sensorineural hearing loss (SNHL), a condition affecting thousands of Australians. We’re using our MEG-MRI research to investigate the remedial effects of hearing aid use in SNHL.

In this project, MRI scans determine the forward model of volume conduction for MEG beamformer source modelling. This permits the localisation of deep, rapid brain activity and connectivity, which is thought to underpin SNHL.

Brain-body imaging

While the brain plays a unique role in regulating all aspects of body function, it can’t be considered independent of the body.

We’re increasingly recognising that to better understand mental health, we need to understand how the brain affects physical health and how physical health affects the brain.

Our 3T whole-body magnetic resonance imaging (MRI) scanner helps us to explore the connections. Our radiographers can image not only the brain’s structure and function but also that of the body. We can scan the heart and body vasculature, the digestive tract, the musculoskeletal system, and the lungs.

Swinburne has expertise in peripheral psychophysiology and its integration with MRI, magnetoencephalography (MEG) and electroencephalography (EEG).

In real-time, we can combine measures of peripheral physiology with those of brain activity. This opens up opportunities to study the brain and body in health and disease.

A current Swinburne project is exploring the potential pleiotropic impact of omega-3 fatty acids and flavonoids on brain (particularly hippocampal) function. We're looking at older adults with mild cognitive impairment or subjective memory impairment.

The individual molecular targets of omega-3 fatty acids and flavonoids suggest that omega-3s and flavonoids may be synergistic, as well as additive. This would argue for their co-administration.

In this randomised controlled trial, we integrate neuroimaging measures of brain atrophy, microstructure, cerebral blood flow and neurometabolites with measures of brain activity.

We use:

  • magnetic resonance imaging (MRI) structural imaging to measure brain atrophy
  • diffusion-weighted MRI to measure microstructure
  • MRI arterial spin labelling to measure cerebral blood flow
  • magnetic resonance spectroscopy to measure neurometabolites
  • magnetoencephalography (MEG) during virtual spatial learning, plus resting state functional magnetic resonance imaging (fMRI) to measure brain activity.

This gives us a more complete assessment of brain aging. Our particular focus is on the integrity of the hippocampus, a brain region heavily implicated in age-related cognitive decline.

The trial is also collecting detailed assessments of:

  • cognitive performance
  • cardiovascular health
  • diet and physical activity
  • biochemical markers of physiological processes linked with aging, such as inflammation and glucoregulation.

In addition, we analyse gut microbiome information.

We integrate these measures with neuroimaging outcomes to help understand the broader interaction of body and brain aging.

Neuroinformatics

Swinburne Neuroimaging has a new suite of fully integrated data management and analysis systems in place. They’re based around open, internationally established biomedical imaging standards.

They include:

  • Digital Imaging and Communications in Medicine (DICOM)
  • XNAT
  • Brain Imaging Data Structure (BIDS).

Simple, accessible and portable interactive computing on virtual machines complements our high-performance workflow computing. Our wide range of analysis software know-how covers SPM, FSL, AFNI, MRTrix, MNE, FieldTrip, BrainStorm, EEGLab, and BrainVision Analyzer.

For the researcher, we offer expertise in advanced containerised pipelines for large scale image analysis. This cuts time and resource requirements, both computational and human. It also makes the results of the analysis more reliable and easier to reproduce.

We’re integrated with the OzStar supercomputer as well as National Collaborative Research Infrastructure Strategy (NCRIS) capabilities such as Nectar Cloud. This opens up exciting possibilities for collaboration with data scientists and artificial intelligence (AI) experts.

Together we can model the complex interactions of neural systems.

We've developed automated pipelines for processing large datasets, with hundreds or thousands of participants. We use high-performance computing facilities like our Ozstar supercomputer.

These pipelines can integrate the processing of multimodal BIDS-formatted data for subsequent integrated analyses, using the latest analysis tools. Pipelines are made available for all NIF researchers.

To this end, the pipelines are built so that users can set default parameters within minutes. After that, processing is done in a single job. This cuts processing time down from (potentially) years to overnight, depending on the data type or dataset size being processed.

As an example, we’re conducting large projects investigating the neural basis of auditory verbal hallucinations (AVHs) in patients with psychotic illnesses, including schizophrenia and bipolar disorder.

In less than 24 hours, we can produce pre-processed data for task and resting functional connectivity, voxel-based morphometry, cortical thickness analyses and diffusion imaging (diffusion tensor, fixel or connectome analyses) in the same stereotactic space ready for separate or integrated analyses.

Use of the OzStar supercomputer allows this to be run in parallel for tens or hundreds of participants or patients, saving days or weeks of analysis time.

Open Science for data sharing and analysis  

Science is becoming more open as researchers strive to make methods and results more transparent (and replicable). In turn, funders wish to boost the impact of funded research, so they promote open sharing of protocols and results.   

In brain imaging research, people acknowledge that many studies are underpowered. This is especially the case if one wants to include measures of individual differences. These are often relevant in clinical studies or studies that represent the general population. 

It's critical to combine data collected in multiple imaging centres in larger-scale studies that make use of open science protocols. This helps to address the main issues. 

At Swinburne Neuroimaging, we design our operations around the FAIR (Findable, Accessible, Interoperable, Reproducible) principles for open science. This boosts the societal and scientific impact of our research.  

We store all magnetoencephalography (MEG), magnetic resonance imaging (MRI) and electroencephalography (EEG) data using the international and open Brain Imaging Data Structure (BIDS) standard. 

The standard opens up a large range of BIDS-compatible analysis pipelines for the researcher. BIDS datasets can easily be shared with researchers around the world (subject to ethics and privacy). This makes collaborative multi-site research straightforward. 

Our recent projects 

Epilepsy management  

Our researchers here at Swinburne have partnered with St Vincent’s Hospital and the University of Melbourne. Together, we’re on track to lead a real revolution in epilepsy management.  

We can now safely isolate the brain regions that trigger epileptic seizures in certain patients.  

The technique works on those with refractory epilepsy, where drugs can’t control the seizures.  

It took 5 years to refine insights for this unique approach. Our state-of-the-art magnetoencephalography (MEG) scanning facility played a crucial part in enabling this success.  

This remarkable technique has already made a big difference to 25 patients. It has improved diagnosis in difficult cases and has even allowed some patients, who were previously considered unsuitable for surgery, to go on to have a successful operation. With this method, 8 patients were even completely spared the added risks from traditional invasive intracranial monitoring.  

Our collaborative work promises to revolutionise the clinical management of epilepsy in Australia. We aim to collect data from a larger group of patients in an effort to provide evidence for a Medicare rebate.  

We'd like all Australians affected by this severe form of epilepsy to have access to the technique.  

Age-related decline in mental function 

We tend to think that as people age everything slows down. This includes our actions, thoughts, and abilities to make decisions.  

Yet we all know people who seem to defy the march of time. They remain physically and mentally agile well into their later years.  

What gives these people their advantage? And how might understanding how their brains manage to stay in the fast lane help us devise interventions and treatments for others?  

Knowing the answers to these questions could help Australians who suffer more severe age-related decline in mental function.  

At Swinburne Neuroimaging, our researchers are studying these important issues from multiple angles and looking at how our diet and exercise could give us greater mental longevity. 

We are working out how interventions in later life can change the way we communicate information and coordinate it across our brains, keeping us up to speed. 

Contact the Swinburne Neuroimaging team

Whether you’re a PhD student, media, or an organisation looking to access our facility or partner with us, please contact Dr Rachel Oliver (Batty), Operations Manager on +61 3 9214 8006 or via neuroimaging@swinburne.edu.au.

Contact us