Australian astronomers find possible ‘fingerprints’ of gravitational waves
CSIRO’s Parkes Radio Telescope, Murriyang, on Wiradjuri Country. Credit: CSIRO/Alex Cherney.
In summary
- Astronomers, led by Swinburne’s Dr Daniel Reardon have found the strongest evidence yet for low-frequency gravitational waves
- The Parkes Pulsar Timing Array collaboration has collected data from a set of pulsars for nearly 20 years, looking for nanosecond pulse delays caused by gravitational waves
- By compiling and analysing this large data set, the team has taken another step towards detecting gravitational waves through the study of pulsars
Astronomers using data collected by CSIRO’s Parkes radio telescope, Murriyang, have found their strongest evidence yet for low-frequency gravitational waves.
For nearly 20 years the Parkes Pulsar Timing Array collaboration has monitored a set of rapidly spinning stars that pulse like a lighthouse, called pulsars.
They are looking for nanosecond pulse delays caused by gravitational waves to provide further evidence for Einstein’s general theory of relativity and build on our understanding of the Universe.
By compiling and analysing this large data set, the team has taken another step towards detecting gravitational waves through the study of pulsars.
Their latest results have been published today in The Astrophysical Journal Letters and Publications of the Astronomical Society of Australia.
In 1916 Albert Einstein proposed space-time as a four-dimensional fabric, and that events such as exploding stars and merging black holes create ripples – or gravitational waves – in this fabric.
Almost a century later, in 2015, researchers from the LIGO and Virgo collaborations made the first direct observation of gravitational waves caused by the collision of two stellar-mass black holes.
In contrast to these gravitational waves, which oscillate multiple times per second, the Parkes Pulsar Timing Array collaboration is searching for gravitational waves emitted by binary supermassive black holes at the centres of galaxies. These gravitational waves oscillate over timescales of many years.
OzGrav and Swinburne University of Technology researcher Dr Daniel Reardon, who led the searches, said that as these gravitational waves pass through our galaxy and wash over the Earth, they will change the apparent rotation frequency of fast-spinning pulsars.
“We can detect gravitational waves by searching for pulses that arrive earlier or later than we expect. Previous studies have shown an intriguing signal in pulsar timing array observations, but its origin was unknown,” Dr Reardon said.
“Our latest research has found a similar signal among the set of pulsars we’ve been studying, and we now see a hint of the fingerprint that identifies this signal as gravitational waves.
“Unlike stellar-mass bursts of gravitational waves, supermassive black holes take years or decades to complete their orbits, and so their signature takes a decade or more to emerge,” he said.
Astronomers around the globe have been busy chasing this gravitational-wave signal by studying pulsars.
Other collaborations in China (CPTA), Europe (EPTA), India (InPTA) and North America (NANOGrav) see a similar signal in their data; their results are also published today in several journal papers.
CSIRO astronomer Dr Andrew Zic, who co-led the analysis, said that while it is exciting all the major collaborations are seeing hints of the waves the true test will come in the near future, when all of the data is combined into a global dataset..
“This signal could still be caused by things like variations in a pulsar’s rotation over a long period of time, or may simply be a statistical fluke,” Dr Zic said.
“Our Parkes radio telescope, Murriyang, has an advanced receiver and an excellent view of the best pulsars in the southern sky, which are essential for this work.
“The next step is to combine pulsar data sets collected by telescopes in both the northern and southern hemispheres to improve the sensitivity of our observations,” he said.
Through the International Pulsar Timing Array consortium, the individual groups around the globe – including the Parkes Pulsar Timing Array collaboration in Australia – are working together to combine their data to better characterise the signal and confirm its origin.
“The next stage of our research will combine the full power of the global array, and rule out any anomalies,” said Dr Zic.
Using pulsars to confirm the detection of low-frequency gravitational waves will expand this emerging area of science, to be explored further by new instruments including the SKA telescopes currently being built in Australia and South Africa.
The Parkes Pulsar Timing Array project is a combined effort from astronomers across several institutions in which pulsars are observed using CSIRO’s Parkes Radio Telescope, Murriyang
CSIRO’s Parkes radio telescope, Murriyang, is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIRO – Australia’s national science agency. We acknowledge the Wiradjuri People as the Traditional Owners of the Parkes Observatory site.
This research was undertaken with the support of the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav). Headquartered at Swinburne University of Technology, OzGrav is a collaboration between several Australian universities including the University of Queensland, The Australian National University, The University of Sydney, Monash University, The University of Adelaide, The University of Western Australia and The University of Melbourne, and CSIRO.
-
Media Enquiries
Related articles
-
- Astronomy
- Education
- Science
- University
Swinburne’s Professor Matthew Bailes honoured with 2024 Prime Minister’s Prize for Science
Swinburne’s Professor Matthew Bailes has been awarded the 2024 Prime Minister’s Prize for Science for his pioneering work in astrophysics, particularly his discovery of fast radio bursts (FRBs).
Wednesday 09 October 2024 -
- Astronomy
- Science
Swinburne-led fungi experiment blasts off to the International Space Station
An experiment developed by Swinburne has been launched into space, containing three types of fungi: Lion’s Mane, Turkey’s Tail, and Cordyceps.Monday 05 August 2024 -
- Astronomy
High school students work with Swinburne astronomers on the future of space
Swinburne’s Youth Space Innovation Challenge has inspired over 330 Australian teenagers to pursue a career in STEM.
Friday 26 July 2024 -
- Astronomy
- Science
Swinburne appoints new Director of Innovative Planet Research Institute
Leading geodesy expert, Professor Allison Kealy, has been appointed as the inaugural Director of Swinburne University's Innovative Planet Research Institute.
Monday 22 April 2024 -
- Astronomy
- University
OzGrav 2.0: A ‘new era of astrophysics’ launched at Swinburne
The next phase in the world-leading ARC Centre of Excellence for Gravitational Wave Discovery, dubbed 'OzGrav 2.0', launched this week at Swinburne University of Technology.
Wednesday 17 April 2024