Swinburne predicts traffic jams – 60 minutes before they happen
A highly accurate traffic prediction model opens up possibilities for the next generation of travel information for drivers.
In summary
- Swinburne has partnered with Intelematics, to develop a new model that can predict traffic patterns up to 60 minutes in advance
- The model was developed using one of Melbourne’s busiest arterial roads as a test case
- The model could be used in the next generation of mapping and traffic applications and tools to give drivers better information to plan their journey before they travel
Swinburne has partnered with Australia’s leader in traffic data and mobility insights, Intelematics, to develop a new model that can predict traffic patterns up to 60 minutes in advance.
The model was developed using Hoddle Street – one of Melbourne’s busiest arterial roads that regularly experiences high rates of congestion – as a test case.
Using data collected over a twelve-month period, capturing 70,072 observations about north and southbound traffic, traffic speeds and volumes can now be predicted with over 96 per cent accuracy.
The hope is the model can be used in the next generation of mapping and traffic applications and tools to give drivers better information to plan their journey before they travel.
Traffic prediction study
Professor of Future Urban Mobility, Hussein Dia, and PhD student Rusul Abduljabbar performed a traffic prediction study, from June 2020 to May 2021, using data collected by Intelematics and stored in the INSIGHT traffic analytics platform.
Intelematics INSIGHT is a traffic data-as-a-service platform that hosts road and traffic data covering more than 36,000kms of NSW and Victorian roads. With over 2 trillion data points, INSIGHT collects traffic data from various sources including sensors, cameras, and in-vehicle trackers.
The Swinburne team used data to develop machine learning algorithms for traffic prediction to allow instant analysis of traffic trends and patterns down to 15-minute time segments.

The result is a highly accurate traffic prediction model that opens up possibilities for implementing in connected vehicles and the future of mobility.
The breakthrough was achieved as part of Ms Abduljabbar’s PhD studies in Smart Urban Mobility/Artificial Intelligence (AI) in Transport. Professor Dia sees the predictive traffic model as part of the next generation of travel information to be used by drivers.
‘It’s for drivers and businesses who aren’t ready to start their travel right now but want to know what the traffic conditions will be like in 30 or 60 minutes, when they are ready to leave,’ Professor Dia says.
‘Importantly, expected delays on major and minor roads can be determined ahead of time, which reduces costs of lost time spent in traffic delays.’
As part of the study, Professor Dia and Ms Abduljabbar met with industry and government representatives and identified a capability gap in the traffic data market and that local councils, government agencies, transportation engineering firms could all benefit from the ability to predict traffic accurately.
‘This type of forward planning is key for businesses, officials and planners wanting to develop an evidence-based business case and funding bid that accurately projects the expected benefits to drivers, the environment, and the local economy,’ Intelematics CEO Nick Marks says.
‘Intelematics is pleased to have played our part in helping to develop what could form the basis for the next-generation of smart mobility, mapping tools and applications used by businesses and road users. It is exciting to think how this tool could transform the morning commute or increase the speed at which businesses make deliveries and fleets operate,’ Mr Marks adds.
Swinburne’s predictive model achieved high prediction exceeding 99 per cent for speed and above 96 per cent for traffic volumes, based on the extracted data. Intelematics and Swinburne are now looking at how they can collaborate further to address urban traffic challenges.
-
Media Enquiries
Related articles
-
- Technology
- Sustainability
PhD student goes to the 2023 UN Water Conference
School of Engineering PhD student Vishnu Pillai recently landed the prestigious opportunity to attend the 2023 UN Water Conference in New York, thanks to his pioneering work on water sustainability solutions.
Friday 05 May 2023 -
- Technology
- Health
Co-designing assistive technologies with those living with disabilities
Swinburne researcher Hana Philips is looking to change the way assistive technologies are developed.
Thursday 18 May 2023 -
- Technology
- Politics
A TikTok ban isn’t a data security solution. It will be difficult to enforce – and could end up hurting users
Montana has made an unprecedented move to become the first US state to ban TikTok. However, doubts have been raised over the decision’s legal foundation, enforcement mechanisms and underlying motives.
Monday 22 May 2023 -
- Technology
Will AI ever reach human-level intelligence? We asked five experts
Artificial intelligence has changed form in recent years. What started in the public eye as a burgeoning field with promising (yet largely benign) applications, has snowballed into a more than US$100 billion industry where the heavy hitters – Microsoft, Google and OpenAI, to name a few – seem intent on out-competing one another.
Wednesday 19 April 2023 -
- Business
- Technology
Swinburne Pre-Accelerator program nurtures early-stage ideas
Ten budding startups moved one step closer to achieving their entrepreneurial aspirations and bringing their business ideas to life by presenting their innovative concepts at the 2023 Pre-Accelerator Program Pitch Night.
Monday 24 April 2023