Profile image for Baohua Jia

Professor Baohua Jia

Professor, Research Leader, Nanophotonic Solar Technology

Biography

Professor Baohua Jia is a research leader at Swinburne’s Centre for Micro-Photonics and Program Leader for Swinburne’s Manufacturing Futures Research Institute.

Her research is focused on a range of areas includes laser nanofabrication of novel photonic nanostructures, investigation of functionality and nonlinear effects inside 3D photonic nanostructures, development of active photonic devices facilitated with nanoemitters and development of novel nanoplasmonic devices with laser nanofabrication. She also examines the employment of nanostructures and nanomaterials for solar energy harvesting and storage research, and has recently focused her research on laser interaction with two-dimensional materials and functional devices.

Professor Jia’s research findings on cutting-edge nanophotonics solar cells has been highlighted in the MIT Technology Review with more than 150 media reports worldwide. From 2006-2012, Professor Jia served as a Project Manager/Project Leader for the Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS, an Australian Research Council Centre of Excellence) managing the key flagship projects ‘3D bandgap confinement' and 'Nanoplasmonic’. Alongside her research and academic work, she is also the honorary treasurer of Australian Optical Society.

Research interests

Photonics; Solar energy harvesting; Nanomterials and nanostructures; Optical communication devices; Nonlinear optics; Graphene

PhD candidate and honours supervision

Higher degrees by research

Accredited to supervise Masters & Doctoral students as Principal Supervisor.

PhD topics and outlines

Design and applications of a novel supercapacitor energy storage system : Currently, the dominated energy storage device remains the battery, which charges and discharges extremely slow, have limited lifetime and are harmful to environment. This project will focus on the design and fabrication of novel energy storage system based on the graphene oxide supercapacitors for target applications.    

Design and fabrication of 3D graphene network for biological applications : The project will focus on the development of techniques to 3D printing complex networks made of graphene materials by using focused laser beam and find the application in biology especially the use as the backbones to guide the cell growth. 

Design and fabrication of graphene metamaterial based on photo-reduction of graphene oxide : The project will focus on the development of novel metameterials made of graphene based on its unique properties. Further, the designed structures will be fabricated by the fast and low cost laser nanofabrication techniques rather than the high cost semiconductor fabrication method, which will find broad applications. 

Large scale fabrication of 2D material heterostructures based on low-cost film synthesis techniques and laser nanofabrication: This project aims to develop a new fabrication method based on the inexpensive chemical synthesis techniques and laser nanofabrication method to large scale produce 2D heterostructures with outstanding properties for different applications. 

Honours

Available to supervise honours students.

Honours topics and outlines

Artificial smart micro/nanostructure design and fabrication: This project will focus on using optimization program to design micro/nanostructures which show outstanding optical, electrical or mechanical properties that can be controlled by the environment such as light illumination, sound wave or thermal process. The design structures will be fabricated by using the 3D laser printing system. 

Design and study on fully automated three-dimensional micro/nanofabrication platform : This project will focus on the development of 3D micro/nanofabrication platform based on the laser writing technique. It is aimed to develop a fully automatic platform with the capability of sample preparation and fast fabrication by implementing the dynamic laser printing technique.    

High performance integrated circuitry design on a graphene film: The project will focus on the fabrication of high performance functional circuits, such as Radio-frequency identification (RFID) chips, on thin film graphene oxide material using laser photo-reduction of graphene oxide technique. The project will include both the design and the fabrication of the circuit. 

Fields of Research

  • Photonics, Optoelectronics And Optical Communications - 020504
  • Nonlinear Optics And Spectroscopy - 020503

Teaching areas

Nanophotonics;Photovoltaics;Manufacturing Porcesses

Awards

  • 2017, Swinburne, Inaugural Research Impact Awards, Swinburne University of Technology
  • 2016, Swinburne, Vice Chancellor's Industrial Engagement Award, Swinburne University of Technology
  • 2015, National, The League of Remarkable Women in Australian Science, Exhibition for the National Science Week
  • 2015, Swinburne, Swinburne Significant Women Award, Swinburne University of Technology
  • 2013, National, Young Tall Poppy Science Award , Australian Institute of Policy
  • 2012, International, L’Oréal Australia and New Zealand For Women in Science Fellowship, L’Oréal Fundation
  • 2012, National, Discovery Early Career Researcher Award , Australian Research Council
  • 2011, Swinburne, Vice-Chancellor's Industry Engagement Award, Swinburne
  • 2010, National, Vicotria Fellow, Victoria Government
  • 2010, National, French Fellowship , Australian French Association for Science and Technology
  • 2009, Swinburne, Vice-Chancellor's Research Award (Early Career), Swinburne University of Technology
  • 2009, National, Australian Research Council Postoral Fellow (APD), Australian Research Council
  • 2005, Other, Biotechnology Entrepreneur Young Achievement Australia Award , Young Achievement Australia

Publications

Also published as: Jia, Baohua; Jia, B.; Jia, Bao Hua; Jia, Bao-Hua
This publication listing is provided by Swinburne Research Bank. If you are the owner of this profile, contact us to update.

Recent research grants awarded

  • 2017: Collaborative Research Agreement between Swinburne and Eden BDM Limited *; Eden BDM Limited
  • 2017: Customer behavioural modelling and decision science applicationsAMSI Intern Program - Student Shuo Li *; Australian Mathematical Sciences Institute Intern Program
  • 2017: Development of Graphene/Graphene-oxide based super -capacitors *; Graphene Solutions Pty Ltd (GSPL)
  • 2017: Graphene Supply Chain Certification *; Australian Engineering Solutions Pty Ltd (Trading as Austeng)
  • 2016: Graphene ultralight-weight diffractive lenses for aerospace applications *; Defence Science Technology Group - Research Contract
  • 2016: Investigating noval glass technologies and photovoltaics in protected cropping *; Horticulture Innovation Australia
  • 2016: Topology Optimisation for Three-dimensional Periodic Nanophotonic Structures *; ARC Project Funds shared with RMIT
  • 2015: Graphene ultralight-wright diffractive lenses for aerospace applications *; Defence Science Institute Collaborative Research Grants
  • 2015: High-performance smart solar powered on-chip capacitive energy storage *; ARC Discovery Projects Scheme
  • 2014: Investigation into a graphene ultra-flat lens array for silicon solar cells breaking the Shockley-Queisser efficiency limit *; ARC Discovery Projects Scheme
  • 2014: Visiting Researcher Scheme 2014 - Assoc Prof Minghui Hong *; Visiting Researcher Scheme
  • 2012: Refractive index manipulation in photonic bandgap materials for highly efficient far-field three-dimensional nonlinear nanofocusing *; ARC Discovery Early Career Researcher Award (DECRA)
  • 2011: Three-dimensional super-resolution nano-photonic fabrication facility *; ARC Linkage Infrastructure and Equipment Scheme
  • 2010: Direct laser writing in quantum dot nanocomposites: from 3D active photonic crystals to 3D active metamaterials *; Australian Academy of Science Scientific Visits Program

* Chief Investigator


Recent media