Bachelor of Engineering (Honours) /Bachelor of Applied Innovation
Course handbook
General Information
Overview
Unique to Swinburne, the Bachelor of Engineering (Honours) / Bachelor of Applied Innovation enables you to expand how you can use your engineering degree to bring meaningful change to the world. It also broadens your employment prospects by opening pathways to roles beyond traditional engineering.
The Bachelor of Engineering (Honours) challenges you to make connections between engineering and information technology, social mobility, changing work patterns, sustainable design practices and a shifting global environment. Combined with the Bachelor of Applied Innovation, you'll be immersed in a collaborative and interdisciplinary environment supported by specialist academic teams
Study structure
Successful completion of the Bachelor of Engineering (Honours) / Bachelor of Applied Innovation requires students to complete units of study to the value of 500 credit points. All units of study are valued at 12.5 credit points unless otherwise stated.
Full-time study: 100 credit points / eight standard units of study per year
Part-time study: 50 credit points / four standard units of study per year
One credit point is equivalent to one hour of study per week per semester (including contact hours and private study)
See the course planner for an example degree structure.
Full-time study: 100 credit points/eight standard units of study per year
One credit point is equivalent to one hour of study per week per semester (including contact hours and private study)
See the course planner for an example degree structure.
Units of study | Unit code |
---|---|
Core units | |
Introduction to Programming
Core unit, 12.5 credit points |
COS10009 |
Humanitarian Engineering Design Project
Core unit, 12.5 credit points |
ENG10001 |
Calculus and Applications
Core unit, 12.5 credit points |
MTH10012 |
Energy and Motion
Core unit, 12.5 credit points |
PHY10001 |
Technology in an Indigenous Context Project
Core unit, 12.5 credit points |
COS10025 |
Engineering Materials
Core unit, 12.5 credit points |
ENG10002 |
Engineering Mechanics
Core unit, 12.5 credit points |
ENG10003 |
Linear Algebra and Applications
Core unit, 12.5 credit points |
MTH10013 |
Professional Experience in Engineering
Core unit |
EAT20008 |
Final Year Capstone Project 1
Core unit, 12.5 credit points, Choose if majoring in Architectural, Civil, Mechanical or Product Design |
ENG40005 |
Final Year Capstone Project 2
Core unit, 12.5 credit points, Choose if majoring in Architectural, Civil, Mechanical or Product Design |
ENG40006 |
Engineering Technology Project A (ENG/CS)
Core unit, 12.5 credit points, Choose if majoring in Software |
EAT40005 |
Engineering Technology Project B (ENG/CS)
Core unit, 12.5 credit points, Choose if majoring in Software |
EAT40006 |
Engineering Technology Project A
Core unit, Choose if majoring in Biomedical, Electrical or Robotics |
ENG40007 |
Engineering Technology Project B
Core unit, Choose if majoring in Biomedical, Electrical or Robotics |
ENG40008 |
Core units | |
Exploring Creativity and Innovation
Core unit, 12.5 credit points |
INV10001 |
Fundamentals of Innovation Practice
Core unit, 12.5 credit points |
INV10002 |
Innovation Sandpit
Core unit, 12.5 credit points |
INV10003 |
Responsible Innovation Futures
Core unit, 12.5 credit points |
INV10004 |
Innovation for Challenges of Today
Core unit, 12.5 credit points |
INV20001 |
Innovation for the Future
Core unit, 12.5 credit points |
INV20002 |
Applied Innovation Internship
Core unit, 12.5 credit points |
INV20003 |
Applied Innovation Studio A
Core unit, 25.0 credit points |
INV30001 |
Applied Innovation Studio B
Core unit, 25.0 credit points |
INV30002 |
Leadership and Facilitation of Innovation
Core unit, 12.5 credit points |
INV30003 |
Units of study | Unit code |
---|---|
Architectural Engineering Studio Project 2
Major unit, 12.5 credit points |
ARC20006 |
Digital Engineering Project
Major unit, 12.5 credit points |
CVE20015 |
Introductory Design Studio
Major unit, 12.5 credit points |
DDD10006 |
Structural Mechanics
Major unit, 12.5 credit points |
MEE20004 |
Architectural Engineering Studio Project 1
Major unit, 12.5 credit points |
ARC10004 |
Design of Concrete Structures
Major unit, 12.5 credit points |
CVE20003 |
Interior Architecture Communication
Major unit, 12.5 credit points |
DIA10005 |
Interior Architecture Digital Documentation 1
Major unit, 12.5 credit points |
DIA20003 |
Design of Steel Structures
Major unit, 12.5 credit points |
CVE30002 |
Engineering Management Project
Major unit, 12.5 credit points |
MME30002 |
Statistics and Computation for Engineering
Major unit, 12.5 credit points |
MTH20010 |
Architectural Engineering Major Project 1
Major unit, 12.5 credit points |
ARC40001 |
Geomechanics
Major unit, 12.5 credit points |
CVE20004 |
Professional Practice 1: BIM (Building Information Management)
Major unit, 12.5 credit points |
ARC30004 |
Geotechnical Engineering
Major unit, 12.5 credit points |
CVE40001 |
Structural Design of Low Rise Buildings
Major unit, 12.5 credit points |
CVE40002 |
Architectural Engineering Major Project 2
Major unit, 12.5 credit points |
ARC40002 |
Infrastructure Design Project
Major unit, 12.5 credit points |
CVE40006 |
Units of study | Unit code |
---|---|
Circuits & Electronics 1
Major unit, 12.5 credit points |
EEE20006 |
Engineering Technology Inquiry Project
Major unit, 12.5 credit points |
ENG20009 |
Medical Imaging Systems
Major unit, 12.5 credit points |
MBP20009 |
Mathematical Methods and Statistics for Engineering
Major unit, 12.5 credit points |
MTH20017 |
Anatomy and Physiology
Major unit, 12.5 credit points |
BIO10004 |
Biomaterials and Biomechanics
Major unit, 12.5 credit points |
BME20001 |
Engineering Technology Design Project
Major unit, 12.5 credit points |
ENG20010 |
Internet and Cybersecurity for Engineering Applications
Major unit, 12.5 credit points |
TNE20003 |
Deploying Secure Engineering Applications Online
Major unit, 12.5 credit points |
TNE30024 |
Clinical Practicum 1 - Neuro
Major unit, 12.5 credit points |
MBP20011 |
Engineering Technology Sustainability Project
Major unit, 12.5 credit points |
ENG30002 |
Medical and Regulatory Practice
Major unit, 12.5 credit points |
BME40004 |
Clinical Practicum 2 - Cardio
Major unit, 12.5 credit points |
MBP30008 |
Object Oriented Programming
Major unit, 12.5 credit points |
COS20007 |
Engineering Technology Innovation Project
Major unit, 12.5 credit points |
ENG40011 |
Artificial Intelligence for Engineering
Major unit, 12.5 credit points |
COS40007 |
Machine Vision
Major unit, 12.5 credit points |
EEE40017 |
Advanced Medical Imaging Systems
Major unit, 12.5 credit points |
BME40005 |
Units of study | Unit code |
---|---|
Topographical Engineering
Major unit, 12.5 credit points |
CVE20001 |
Digital Engineering Project
Major unit, 12.5 credit points |
CVE20015 |
Structural Mechanics
Major unit, 12.5 credit points |
MEE20004 |
Statistics and Computation for Engineering
Major unit, 12.5 credit points |
MTH20010 |
Design of Concrete Structures
Major unit, 12.5 credit points |
CVE20003 |
Geomechanics
Major unit, 12.5 credit points |
CVE20004 |
Road Engineering
Major unit, 12.5 credit points |
CVE20005 |
Fluid Mechanics 1: Forces and Energy
Major unit, 12.5 credit points |
MEE20003 |
Urban Water Resources
Major unit, 12.5 credit points |
CVE30001 |
Design of Steel Structures
Major unit, 12.5 credit points |
CVE30002 |
Transport Engineering
Major unit, 12.5 credit points |
CVE30003 |
Engineering Management Project
Major unit, 12.5 credit points |
MME30002 |
Cost Engineering Project
Major unit, 12.5 credit points |
CVE30005 |
Geotechnical Engineering
Major unit, 12.5 credit points |
CVE40001 |
Structural Design of Low Rise Buildings
Major unit, 12.5 credit points |
CVE40002 |
Water Engineering Design Project
Major unit, 12.5 credit points |
CVE40010 |
Infrastructure Design Project
Major unit, 12.5 credit points |
CVE40006 |
Engineering Data Analytics and Applications
Major unit, 12.5 credit points |
CVE40011 |
Units of study | Unit code |
---|---|
Circuits & Electronics 1
Major unit, 12.5 credit points |
EEE20006 |
Engineering Technology Inquiry Project
Major unit, 12.5 credit points |
ENG20009 |
Mathematical Methods and Statistics for Engineering
Major unit, 12.5 credit points |
MTH20017 |
Electrical Machines
Major unit, 12.5 credit points |
EEE20005 |
Engineering Technology Design Project
Major unit, 12.5 credit points |
ENG20010 |
Internet and Cybersecurity for Engineering Applications
Major unit, 12.5 credit points |
TNE20003 |
Engineering Technology Sustainability Project
Major unit, 12.5 credit points |
ENG30002 |
Control and Automation
Major unit, 12.5 credit points |
RME30002 |
Power Protection
Major unit, 12.5 credit points |
EEE20013 |
Electrical Power Systems
Major unit, 12.5 credit points |
EEE30002 |
Deploying Secure Engineering Applications Online
Major unit, 12.5 credit points |
TNE30024 |
Artificial Intelligence for Engineering
Major unit, 12.5 credit points |
COS40007 |
Power Electronics
Major unit, 12.5 credit points |
EEE40005 |
Hydrogen and Energy Storage
Major unit, 12.5 credit points |
EEE30006 |
Renewable Energy
Major unit, 12.5 credit points |
EEE40015 |
Power System Operation and Control
Major unit, 12.5 credit points |
EEE40007 |
Design of Smart Power Grids
Major unit, 12.5 credit points |
EEE40016 |
Engineering Technology Innovation Project
Major unit, 12.5 credit points |
ENG40011 |
Units of study | Unit code |
---|---|
Thermodynamics
Major unit, 12.5 credit points |
MEE20001 |
Fluid Mechanics 1: Forces and Energy
Major unit, 12.5 credit points |
MEE20003 |
Design and Product Visualisation Project
Major unit, 12.5 credit points |
MEE20007 |
Statistics and Computation for Engineering
Major unit, 12.5 credit points |
MTH20010 |
Structural Mechanics
Major unit, 12.5 credit points |
MEE20004 |
Materials Processing and Machining
Major unit, 12.5 credit points |
MEE20005 |
Engineering Dynamics
Major unit, 12.5 credit points |
MEE20006 |
Engineering Management Project
Major unit, 12.5 credit points |
MME30002 |
Vibration and Signal Analysis
Major unit, 12.5 credit points |
MEE20008 |
Manufacturing Engineering
Major unit, 12.5 credit points |
MEE30001 |
Control Engineering
Major unit, 12.5 credit points |
MEE30002 |
Heat Transfer
Major unit, 12.5 credit points |
MEE40001 |
Solid Mechanics
Major unit, 12.5 credit points |
MEE30004 |
Machine Design Project
Major unit, 12.5 credit points |
MEE30005 |
Machine Dynamics
Major unit, 12.5 credit points |
MEE40003 |
Renewable Energy and Hydrogen Technologies
Major unit, 12.5 credit points |
MEE40011 |
Fluid Mechanics 2: Machine, Supersonics and Modelling
Major unit, 12.5 credit points |
MEE40004 |
Integrated Engineering Design Project
Major unit, 12.5 credit points |
MEE40010 |
Units of study | Unit code |
---|---|
Product Visualisation 1: Hand Sketching
Major unit, 12.5 credit points |
DID10001 |
Digital Modelling
Major unit, 12.5 credit points |
DPD20001 |
Product Design Engineering Studio
Major unit, 12.5 credit points |
DPD20002 |
Statistics and Computation for Engineering
Major unit, 12.5 credit points |
MTH20010 |
Materials and Processes
Major unit, 12.5 credit points |
DID20002 |
Sustainable Product Design Project
Major unit, 12.5 credit points |
DPD20004 |
Structural Mechanics
Major unit, 12.5 credit points |
MEE20004 |
Thermo Fluid Systems
Major unit, 12.5 credit points |
PDE20001 |
Engineering Management Project
Major unit, 12.5 credit points |
MME30002 |
Advanced Product Design
Major unit, 12.5 credit points |
DPD30001 |
Machine Design Project
Major unit, 12.5 credit points |
MEE30005 |
Integrated Engineering Design Project
Major unit, 12.5 credit points |
MEE40010 |
Digital Manufacturing
Major unit, 12.5 credit points |
DID30001 |
Design for Social Responsibility
Major unit, 12.5 credit points |
DPD30002 |
Global Design
Major unit, 12.5 credit points |
DPD40002 |
Renewable Energy and Hydrogen Technologies
Major unit, 12.5 credit points |
MEE40011 |
Professional Design Attributes
Major unit, 12.5 credit points |
DPD40004 |
Manufacturing Systems and Design
Major unit, 12.5 credit points |
PDE40001 |
Units of study | Unit code |
---|---|
Object Oriented Programming
Major unit, 12.5 credit points |
COS20007 |
Engineering Technology Inquiry Project
Major unit, 12.5 credit points |
ENG20009 |
Mathematical Methods and Statistics for Engineering
Major unit, 12.5 credit points |
MTH20017 |
Cloud Computing Architecture
Major unit, 12.5 credit points |
COS20019 |
Internet and Cybersecurity for Engineering Applications
Major unit, 12.5 credit points |
TNE20003 |
Engineering Technology Design Project
Major unit, 12.5 credit points |
ENG20010 |
Data Structures and Patterns
Major unit, 12.5 credit points |
COS30008 |
Introduction to Artificial Intelligence
Major unit, 12.5 credit points |
COS30019 |
Interface Design and Development
Major unit, 12.5 credit points |
COS30043 |
Software Architectures and Design
Major unit, 12.5 credit points |
SWE30003 |
Software Development for Mobile Devices
Major unit, 12.5 credit points |
COS30017 |
Engineering Technology Sustainability Project
Major unit, 12.5 credit points |
ENG30002 |
Software Testing and Reliability
Major unit, 12.5 credit points |
SWE30009 |
Deploying Secure Engineering Applications Online
Major unit, 12.5 credit points |
TNE30024 |
Concurrent Programming
Major unit, 12.5 credit points |
COS40003 |
Software Deployment and Evolution
Major unit, 12.5 credit points |
SWE40006 |
Artificial Intelligence for Engineering
Major unit, 12.5 credit points |
COS40007 |
Engineering Technology Innovation Project
Major unit, 12.5 credit points |
ENG40011 |
Units of study | Unit code |
---|---|
Object Oriented Programming
Major unit, 12.5 credit points |
COS20007 |
Circuits & Electronics 1
Major unit, 12.5 credit points |
EEE20006 |
Mathematical Methods and Statistics for Engineering
Major unit, 12.5 credit points |
MTH20017 |
Engineering Technology Inquiry Project
Major unit, 12.5 credit points |
ENG20009 |
Internet and Cybersecurity for Engineering Applications
Major unit, 12.5 credit points |
TNE20003 |
Engineering Technology Design Project
Major unit, 12.5 credit points |
ENG20010 |
Structural Mechanics
Major unit, 12.5 credit points |
MEE20004 |
Engineering Dynamics
Major unit, 12.5 credit points |
MEE20006 |
Engineering Technology Sustainability Project
Major unit, 12.5 credit points |
ENG30002 |
Design and Product Visualisation Project
Major unit, 12.5 credit points |
MEE20007 |
Control and Automation
Major unit, 12.5 credit points |
RME30002 |
Machine Vision
Major unit, 12.5 credit points |
EEE40017 |
Engineering Technology Innovation Project
Major unit, 12.5 credit points |
ENG40011 |
Robotic Control
Major unit, 12.5 credit points |
RME30003 |
Mechatronics Systems Design
Major unit, 12.5 credit points |
RME40002 |
Machine Design Project
Major unit, 12.5 credit points |
MEE30005 |
Robot Systems Design
Major unit, 12.5 credit points |
RME40003 |
Deploying Secure Engineering Applications Online
Major unit, 12.5 credit points |
TNE30024 |
Learning outcomes
Students who successfully complete the Bachelor of Engineering (Honours) will be able to:
- apply coherent and advanced knowledge of the chosen major in engineering in diverse contexts and applications using critical thinking and judgment
- apply knowledge of research principles and methods to plan and execute a piece of research with some independence, as preparation for research higher degrees
- apply problem solving, design and decision-making methodologies to identify and provide innovative solutions to complex problems with intellectual independence
- apply abstraction, mathematics and engineering fundamentals to the analysis, design and operation of a model, using appropriate engineering methods and tools
- communicate proficiently in professional practice to a variety of audiences, function as an effective member or leader of a team, and use the basic tools and practices of project management within project work
- exemplify professionalism, integrity, ethical conduct, professional accountability, and an awareness of professional engineering practice in a global, sustainable, and Indigenous context
- reflect on and take responsibility for their own learning and self-management processes, and manage their own time and processes effectively by regularly reviewing of personal performance as a means of managing continuing professional development and lifelong learning
Students who successfully complete the Bachelor of Applied Innovation will be able to:
- apply a series of thinking systems, creativity toolkits and innovation frameworks to design contextually-relevant solutions addressing local and global challenges in and outside their discipline
- identify and articulate opportunities to innovate and create impact informed by user-centred research and/or data
- adapt their discipline skillsets in new situations in response to complex and changing contexts, including interdisciplinary environments
- facilitate and contribute to innovation teams that seek solutions to complex challenges, using inclusive collaboration practices to leverage different skills and perspectives
- navigate commercial, human and technical requirements aided by prototyping and testing to deliver solutions that create value
- communicate the value of experimentation, ideas and innovation with confidence in developing solutions to investors, potential partners, employers or other stakeholders
- develop futures-focused innovations that integrate responsible social, technological and environmental factors
Career opportunities
The Bachelor of Engineering (Honours) course incorporates developments in information technology, society’s changing work patterns, sustainable design practices and the need to meet engineering “world best practice” in engineering. Applied Innovation career outcomes will vary depending on discipline focus and individual majors, and complement discipline employability skills through innovation capabilities. Graduates will have the skills and attributes for roles including innovation consultant, innovation lead, innovation analyst, strategic designer, creative producer, start-up founder, human-centred researcher, self-employed entrepreneur, product manager, transformation lead, innovation strategist and innovation manager.
Professional recognition
This degree program is designed to produce graduates who have the technological skills and knowledge expected of professional engineers. Graduates are eligible to apply for graduate membership of Engineers Australia.
Course rules
To qualify for the award of Bachelor of Engineering (Honours) / Bachelor of Applied Innovation, students must complete 500 credit points comprising of:
- 14 core units (175 credit points)
- 18 units from one Engineering major (225 credit points)
- 6 units from Applied Innovation major (100 credit points)
- EAT20008 Professional Experience in Engineering (compulsory no-credit unit)
Students must not complete more than 200 credit points (normally 16 units) at introductory level.
Professional placements
Domestic students also have an opportunity to undertake a WIL Professional Placement through a competitive selection process. Please note that due to government regulation, international students holding a student visa are not able to undertake Professional Placements in this course.
Students who undertake a 12-month professional placement are subject to the following course rules and must complete 600 credit points comprising:
- 14 core units (175 credit points)
- 18 units from one Engineering major (225 credit points)
- 6 units from Applied Innovation major (100 credit points)
- 4 units from Professional Placement co-major (100 credit points)
- EAT20008 Professional Experience in Engineering (compulsory non-credit unit)
Students who elect to undertake a 6-month professional placement are subject to the following course rules and must complete 550 credit points comprising:
- 14 core units (175 credit points)
- 18 units from one Engineering major (225 credit points)
- 6 units from Applied Innovation major (100 credit points)
- 2 units from Professional Placement minor (50 credit points)
- EAT20008 Professional Experience in Engineering (compulsory non-credit unit)
Maximum Academic Credit
The maximum level of credit that can be granted for the Bachelor of Engineering (Honours) double degree component is 225 credit points (normally 18 units). The maximum level of credit that can be granted for the Bachelor of Applied Innovation double degree component is 100 credit points (normally eight units). This is based on exit award requirements of 500 credit points.
Admission criteria
Information about Swinburne's general admission criteria can be found at Admissions at Swinburne - Higher Education webpage.
Entry requirements
A. Applicants with recent secondary education (within past three years)
ATAR
This course uses the ATAR as part of its selection considerations.
Guaranteed ATAR: if you receive an ATAR of 75 or higher and meet all the essential requirements for this course, you will be guaranteed an offer.
Educational history
An applicant's entire academic history, including ATAR results, will be considered for entry into this course.
Selection rank adjustments
Selection ranks for this course will be calculated based on your ATAR with adjustments to overall study scores based on subjects studied, location of your home address, SEAS application, and participation In Swinburne's Early Leaders program. For further details about selection rank adjustments, see Admissions at Swinburne.
Subject Adjustments
A study score of 25 in any Business, any Information Technology, any Mathematics or Global Politics equals 2 aggregate points per study. Overall maximum of 10 points.
Meeting course prerequisites
VCE units 3 and 4: a study score of at least 25 in any English (except EAL) or at least 30 in English as Alternate Language (EAL) or equivalent. VCE Units 3 and 4: a study score of at least 20 in one of Maths: Mathematical Methods (CAS) or Maths: Specialist Mathematics or equivalent.
ATAR profile for those offered places wholly or partly on the basis of ATAR in Semester 1 2024
ATAR-Based offers only, across all offer rounds | ATAR Excluding adjustment factors |
Selection Rank ATAR + any adjustment factors |
---|---|---|
Highest rank to receive an offer | <5 | <5 |
Median rank to receive an offer | <5 | <5 |
Lowest rank to receive an offer | <5 | <5 |
B. Applicants with higher education study
Educational history
An applicant's entire academic history, including results from previous higher education study will be considered for entry into this course. If previous higher education qualifications are incomplete, results must have been obtained in the last seven years.
Meeting course prerequisites
As for Year 12 or equivalent.
STAT/Bridging courses
Results from the STAT Multiple Choice will be considered for applicants without an ATAR and whose post-secondary studies do not meet the minimum requirements. Applicants who do not meet the English prerequisites can sit STAT Written English. STAT results are valid for two years.
C. Applicants with vocational education and training (VET) study
Educational history
An applicant's entire academic history from the past seven years, including complete and/or incomplete post-secondary VET studies, will be considered for entry into this course. Only graded results will be considered.
Meeting course prerequisites
As for Year 12 or equivalent.
STAT/Bridging courses
Results from the STAT Multiple Choice will be considered for applicants without an ATAR and whose post-secondary studies do not meet the minimum requirements. Applicants who do not meet the English prerequisites can sit STAT Written English. STAT results are valid for two years.
D. Applicants with work and life experience
Entire academic record
This course uses an applicant's entire academic record as part of its selection considerations, including an applicant's ATAR results from the last seven years can be considered for entry into this course.
Meeting course prerequisites
As for Year 12 or equivalent.
STAT/Bridging courses
Results from the STAT Multiple Choice will be considered for applicants without an ATAR and whose post-secondary studies do not meet the minimum requirements. Applicants who do not meet the English prerequisites can sit STAT Written English. STAT results are valid for two years.
Student profile
The table below gives an indication of the likely peer cohort for new students in this course. It provides data on students who commenced in this course in the most relevant recent intake period, including those admitted through all offer rounds and international students studying in Australia.
Semester 1, 2024 | ||
---|---|---|
Applicant background | Number of students | Percentage of all students |
(A) Higher education study (includes a bridging or enabling course) | 0 | 0% |
(B) Vocational education and training (VET) study | <5 | <5 |
(C) Work and life experience (admitted on the basis of previous achievement not in the other three categories) | 0 | 0% |
(D) Recent secondary education: | ||
Admitted solely on the basis of ATAR (regardless of whether this includes the consideration of adjustment factors such as equity or subject bonus points) | 0 | 0% |
Admitted where both ATAR and additional criteria were N/A considered (e.g. portfolio, audition, extra test, early offer conditional on minimum ATAR) | N/A | N/A |
Admitted on the basis of other criteria only and ATAR was N/A not a factor (e.g. special consideration, audition alone, schools recommendation scheme with no minimum ATAR requirement) | N/P | N/P |
International students | 0 | 0% |
All students | 6 | 100% |
Notes:
N/A – Students not accepted in this category.
Interested in the Bachelor of Engineering (Honours) / Bachelor of Applied Innovation?
From state-of-the-art facilities to opportunities to engage with industry – this course is designed with your future in mind. Let's get started.