General Information

Overview

Combine your knowledge of engineering and business to become a double threat in the professional world, with the Bachelor of Engineering (Honours)/Bachelor of Business degree. Gain theoretical and practical engineering knowledge through workshops and industry projects. Learn contemporary approaches to app development involving mobile devices and web-based systems, with an emphasis on the design and implementation of effective human-computer interfaces.

Study structure

Successful completion of the Bachelor of Engineering (Honours) / Bachelor of Computer Science requires students to complete units of study to the value of 500 credit points. All units of study are valued at 12.5 credit points unless otherwise stated.

  • Full-time study: 100 credit points/eight standard units of study per year

  • Part-time study: 50 credit points/four standard units of study per year

  • One credit point is equivalent to one hour of study per week per semester (including contact hours and private study)

  • See the course planner for an example degree structure.

  • Full-time study: 100 credit points/eight standard units of study per year

  • One credit point is equivalent to one hour of study per week per semester (including contact hours and private study)

  • See the course planner for an example degree structure.

Units of study Unit code
Core units
Introduction to Programming
Core unit, 12.5 credit points
COS10009
Humanitarian Engineering Design Project
Core unit, 12.5 credit points
ENG10001
Calculus and Applications
Core unit, 12.5 credit points
MTH10012
Energy and Motion
Core unit, 12.5 credit points
PHY10001
Technology in an Indigenous Context Project
Core unit, 12.5 credit points
COS10025
Engineering Materials
Core unit, 12.5 credit points
ENG10002
Engineering Mechanics
Core unit, 12.5 credit points
ENG10003
Linear Algebra and Applications
Core unit, 12.5 credit points
MTH10013
Professional Experience in Engineering
Core unit
EAT20008
Final Year Capstone Project 1
Core unit, 12.5 credit points, Choose if majoring in Architectural, Civil, Mechanical or Product Design
ENG40005
Final Year Capstone Project 2 
Core unit, 12.5 credit points, Choose if majoring in Architectural, Civil, Mechanical or Product Design
ENG40006
Units of study Unit code
Core units
Computer Systems
Core unit, 12.5 credit points
COS10004
Introduction to Programming
Core unit, 12.5 credit points
COS10009
Technology in an Indigenous Context Project
Core unit, 12.5 credit points
COS10025
Computing Technology Inquiry Project
Core unit, 12.5 credit points
COS10026
Networks and Switching
Core unit, 12.5 credit points
TNE10006
Object Oriented Programming
Core unit, 12.5 credit points
COS20007
Computing Technology Project A
Core unit, 12.5 credit points
COS40005
Computing Technology Project B
Core unit, 12.5 credit points
COS40006
Units of study Unit code
Architectural Engineering Studio Project 2
Major unit, 12.5 credit points
ARC20006
Digital Engineering Project
Major unit, 12.5 credit points
CVE20015
Introductory Design Studio
Major unit, 12.5 credit points
DDD10006
Structural Mechanics
Major unit, 12.5 credit points
MEE20004
Architectural Engineering Studio Project 1
Major unit, 12.5 credit points
ARC10004
Design of Concrete Structures
Major unit, 12.5 credit points
CVE20003
Interior Architecture Communication
Major unit, 12.5 credit points
DIA10005
Interior Architecture Digital Documentation 1
Major unit, 12.5 credit points
DIA20003
Design of Steel Structures
Major unit, 12.5 credit points
CVE30002
Engineering Management Project
Major unit, 12.5 credit points
MME30002
Statistics and Computation for Engineering
Major unit, 12.5 credit points
MTH20010
Architectural Engineering Major Project 1
Major unit, 12.5 credit points
ARC40001
Geomechanics
Major unit, 12.5 credit points
CVE20004
Professional Practice 1: BIM (Building Information Management)
Major unit, 12.5 credit points
ARC30004
Geotechnical Engineering
Major unit, 12.5 credit points
CVE40001
Structural Design of Low Rise Buildings
Major unit, 12.5 credit points
CVE40002
Architectural Engineering Major Project 2
Major unit, 12.5 credit points
ARC40002
Infrastructure Design Project
Major unit, 12.5 credit points
CVE40006
Units of study Unit code
Circuits & Electronics 1
Major unit, 12.5 credit points
EEE20006
Engineering Technology Inquiry Project
Major unit, 12.5 credit points
ENG20009
Medical Imaging Systems
Major unit, 12.5 credit points
MBP20009
Mathematical Methods and Statistics for Engineering
Major unit, 12.5 credit points
MTH20017
Anatomy and Physiology
Major unit, 12.5 credit points
BIO10004
Biomaterials and Biomechanics
Major unit, 12.5 credit points
BME20001
Engineering Technology Design Project
Major unit, 12.5 credit points
ENG20010
Internet and Cybersecurity for Engineering Applications
Major unit, 12.5 credit points
TNE20003
Medical and Regulatory Practice
Major unit, 12.5 credit points
BME40004
Engineering Technology Sustainability Project
Major unit, 12.5 credit points
ENG30002
Clinical Practicum 1 - Neuro
Major unit, 12.5 credit points
MBP20011
Object Oriented Programming
Major unit, 12.5 credit points
COS20007
Clinical Practicum 2 - Cardio
Major unit, 12.5 credit points
MBP30008
Deploying Secure Engineering Applications Online
Major unit, 12.5 credit points
TNE30024
Engineering Technology Innovation Project
Major unit, 12.5 credit points
ENG40011
Artificial Intelligence for Engineering
Major unit, 12.5 credit points
COS40007
Machine Vision
Major unit, 12.5 credit points
EEE40017
Advanced Medical Imaging Systems
Major unit, 12.5 credit points
BME40005
Units of study Unit code
Topographical Engineering
Major unit, 12.5 credit points
CVE20001
Digital Engineering Project
Major unit, 12.5 credit points
CVE20015
Structural Mechanics
Major unit, 12.5 credit points
MEE20004
Statistics and Computation for Engineering
Major unit, 12.5 credit points
MTH20010
Design of Concrete Structures
Major unit, 12.5 credit points
CVE20003
Geomechanics
Major unit, 12.5 credit points
CVE20004
Road Engineering
Major unit, 12.5 credit points
CVE20005
Fluid Mechanics 1: Forces and Energy
Major unit, 12.5 credit points
MEE20003
Urban Water Resources
Major unit, 12.5 credit points
CVE30001
Design of Steel Structures
Major unit, 12.5 credit points
CVE30002
Transport Engineering
Major unit, 12.5 credit points
CVE30003
Engineering Management Project
Major unit, 12.5 credit points
MME30002
Cost Engineering Project
Major unit, 12.5 credit points
CVE30005
Geotechnical Engineering
Major unit, 12.5 credit points
CVE40001
Structural Design of Low Rise Buildings
Major unit, 12.5 credit points
CVE40002
Water Engineering Design Project
Major unit, 12.5 credit points
CVE40010
Infrastructure Design Project
Major unit, 12.5 credit points
CVE40006
Engineering Data Analytics and Applications
Major unit, 12.5 credit points
CVE40011
Units of study Unit code
Circuits & Electronics 1
Major unit, 12.5 credit points
EEE20006
Engineering Technology Inquiry Project
Major unit, 12.5 credit points
ENG20009
Mathematical Methods and Statistics for Engineering
Major unit, 12.5 credit points
MTH20017
Electrical Machines
Major unit, 12.5 credit points
EEE20005
Engineering Technology Design Project
Major unit, 12.5 credit points
ENG20010
Internet and Cybersecurity for Engineering Applications
Major unit, 12.5 credit points
TNE20003
Engineering Technology Sustainability Project
Major unit, 12.5 credit points
ENG30002
Control and Automation
Major unit, 12.5 credit points
RME30002
Power Protection
Major unit, 12.5 credit points
EEE20013
Electrical Power Systems
Major unit, 12.5 credit points
EEE30002
Deploying Secure Engineering Applications Online
Major unit, 12.5 credit points
TNE30024
Artificial Intelligence for Engineering
Major unit, 12.5 credit points
COS40007
Power Electronics
Major unit, 12.5 credit points
EEE40005
Hydrogen and Energy Storage
Major unit, 12.5 credit points
EEE30006
Renewable Energy
Major unit, 12.5 credit points
EEE40015
Power System Operation and Control
Major unit, 12.5 credit points
EEE40007
Design of Smart Power Grids
Major unit, 12.5 credit points
EEE40016
Engineering Technology Innovation Project
Major unit, 12.5 credit points
ENG40011
Units of study Unit code
Thermodynamics
Major unit, 12.5 credit points
MEE20001
Fluid Mechanics 1: Forces and Energy
Major unit, 12.5 credit points
MEE20003
Design and Product Visualisation Project
Major unit, 12.5 credit points
MEE20007
Statistics and Computation for Engineering
Major unit, 12.5 credit points
MTH20010
Structural Mechanics
Major unit, 12.5 credit points
MEE20004
Materials Processing and Machining
Major unit, 12.5 credit points
MEE20005
Engineering Dynamics
Major unit, 12.5 credit points
MEE20006
Engineering Management Project
Major unit, 12.5 credit points
MME30002
Vibration and Signal Analysis
Major unit, 12.5 credit points
MEE20008
Manufacturing Engineering
Major unit, 12.5 credit points
MEE30001
Control Engineering
Major unit, 12.5 credit points
MEE30002
Heat Transfer
Major unit, 12.5 credit points
MEE40001
Solid Mechanics
Major unit, 12.5 credit points
MEE30004
Machine Design Project
Major unit, 12.5 credit points
MEE30005
Machine Dynamics
Major unit, 12.5 credit points
MEE40003
Renewable Energy and Hydrogen Technologies
Major unit, 12.5 credit points
MEE40011
Fluid Mechanics 2: Machine, Supersonics and Modelling
Major unit, 12.5 credit points
MEE40004
Integrated Engineering Design Project
Major unit, 12.5 credit points
MEE40010
Units of study Unit code
Product Visualisation 1: Hand Sketching
Major unit, 12.5 credit points
DID10001
Digital Modelling
Major unit, 12.5 credit points
DPD20001
Product Design Engineering Studio
Major unit, 12.5 credit points
DPD20002
Statistics and Computation for Engineering
Major unit, 12.5 credit points
MTH20010
Materials and Processes
Major unit, 12.5 credit points
DID20002
Sustainable Product Design Project
Major unit, 12.5 credit points
DPD20004
Structural Mechanics
Major unit, 12.5 credit points
MEE20004
Thermo Fluid Systems
Major unit, 12.5 credit points
PDE20001
Engineering Management Project
Major unit, 12.5 credit points
MME30002
Advanced Product Design
Major unit, 12.5 credit points
DPD30001
Machine Design Project
Major unit, 12.5 credit points
MEE30005
Integrated Engineering Design Project
Major unit, 12.5 credit points
MEE40010
Digital Manufacturing
Major unit, 12.5 credit points
DID30001
Design for Social Responsibility
Major unit, 12.5 credit points
DPD30002
Global Design
Major unit, 12.5 credit points
DPD40002
Renewable Energy and Hydrogen Technologies
Major unit, 12.5 credit points
MEE40011
Professional Design Attributes
Major unit, 12.5 credit points
DPD40004
Manufacturing Systems and Design
Major unit, 12.5 credit points
PDE40001
Units of study Unit code
Object Oriented Programming
Major unit, 12.5 credit points
COS20007
Circuits & Electronics 1
Major unit, 12.5 credit points
EEE20006
Mathematical Methods and Statistics for Engineering
Major unit, 12.5 credit points
MTH20017
Engineering Technology Inquiry Project
Major unit, 12.5 credit points
ENG20009
Internet and Cybersecurity for Engineering Applications
Major unit, 12.5 credit points
TNE20003
Engineering Technology Design Project
Major unit, 12.5 credit points
ENG20010
Structural Mechanics
Major unit, 12.5 credit points
MEE20004
Engineering Dynamics
Major unit, 12.5 credit points
MEE20006
Engineering Technology Sustainability Project
Major unit, 12.5 credit points
ENG30002
Design and Product Visualisation Project
Major unit, 12.5 credit points
MEE20007
Control and Automation
Major unit, 12.5 credit points
RME30002
Machine Vision
Major unit, 12.5 credit points
EEE40017
Engineering Technology Innovation Project
Major unit, 12.5 credit points
ENG40011
Robotic Control
Major unit, 12.5 credit points
RME30003
Mechatronics Systems Design
Major unit, 12.5 credit points
RME40002
Machine Design Project
Major unit, 12.5 credit points
MEE30005
Robot Systems Design
Major unit, 12.5 credit points
RME40003
Deploying Secure Engineering Applications Online
Major unit, 12.5 credit points
TNE30024
Units of study Unit code
Cloud Computing Architecture
Major unit, 12.5 credit points
COS20019
Computing Technology Design Project
Major unit, 12.5 credit points
COS20031
Introduction to Artificial Intelligence
Major unit, 12.5 credit points
COS30019
Intelligent Systems
Major unit, 12.5 credit points
COS30018
Computing Technology Innovation Project
Major unit, 12.5 credit points
COS30049
Applied Machine Learning
Major unit, 12.5 credit points
COS30082
Software Architectures and Design
Major unit, 12.5 credit points
SWE30003
Artificial Intelligence for Engineering
Major unit, 12.5 credit points
COS40007
Units of study Unit code
Cloud Computing Architecture
Major unit, 12.5 credit points
COS20019
Computing Technology Design Project
Major unit, 12.5 credit points
COS20031
Malware Analysis
Major unit, 12.5 credit points
COS20030
Computing Technology Innovation Project
Major unit, 12.5 credit points
COS30049
Internet and Cybersecurity for Engineering Applications
Major unit, 12.5 credit points
TNE20003
Network Security and Resilience
Major unit, 12.5 credit points
TNE30009
Software Architectures and Design
Major unit, 12.5 credit points
SWE30003
IT Security
Major unit, 12.5 credit points
COS30015
Units of study Unit code
Cloud Computing Architecture
Major unit, 12.5 credit points
COS20019
Data Science Principles
Major unit, 12.5 credit points
COS10022
Computing Technology Design Project
Major unit, 12.5 credit points
COS20031
Big Data Architecture and Application
Major unit, 12.5 credit points
COS20028
Computing Technology Innovation Project
Major unit, 12.5 credit points
COS30049
Software Architectures and Design
Major unit, 12.5 credit points
SWE30003
Data Visualisation
Major unit, 12.5 credit points
COS30045
Software Deployment and Evolution
Major unit, 12.5 credit points
SWE40006
Units of study Unit code
3D Modelling for Objects and Environments
Major unit, 12.5 credit points
DDD20022
Artificial Intelligence for Games
Major unit, 12.5 credit points
COS30002
Computing Technology Design Project
Major unit, 12.5 credit points
COS20031
Software Development for Mobile Devices
Major unit, 12.5 credit points
COS30017
Games Programming
Major unit, 12.5 credit points
COS30031
Computing Technology Innovation Project
Major unit, 12.5 credit points
COS30049
Software Architectures and Design
Major unit, 12.5 credit points
SWE30003
Software Deployment and Evolution
Major unit, 12.5 credit points
SWE40006
Units of study Unit code
Cloud Computing Architecture
Major unit, 12.5 credit points
COS20019
Computing Technology Design Project
Major unit, 12.5 credit points
COS20031
Network Administration
Major unit, 12.5 credit points
TNE10005
Software Development for Mobile Devices
Major unit, 12.5 credit points
COS30017
Computing Technology Innovation Project
Major unit, 12.5 credit points
COS30049
IoT Programming
Major unit, 12.5 credit points
SWE30011
Software Architectures and Design
Major unit, 12.5 credit points
SWE30003
Advanced Web Development
Major unit, 12.5 credit points
COS30020
Units of study Unit code
Cloud Computing Architecture
Major unit, 12.5 credit points
COS20019
Computing Technology Design Project
Major unit, 12.5 credit points
COS20031
Data Structures and Patterns
Major unit, 12.5 credit points
COS30008
Software Testing and Reliability
Major unit, 12.5 credit points
SWE30009
Computing Technology Innovation Project
Major unit, 12.5 credit points
COS30049
Interface Design and Development
Major unit, 12.5 credit points
COS30043
Software Architectures and Design
Major unit, 12.5 credit points
SWE30003
Concurrent Programming
Major unit, 12.5 credit points
COS40003

Learning outcomes

Students who successfully complete the Bachelor of Engineering (Honours) will be able to:

  • apply coherent and advanced knowledge of the chosen major in engineering in diverse contexts and applications using critical thinking and judgment
  • apply knowledge of research principles and methods to plan and execute a piece of research with some independence, as preparation for research higher degrees
  • apply problem solving, design and decision-making methodologies to identify and provide innovative solutions to complex problems with intellectual independence
  • apply abstraction, mathematics and engineering fundamentals to the analysis, design and operation of a model, using appropriate engineering methods and tools
  • communicate proficiently in professional practice to a variety of audiences, function as an effective member or leader of a diverse team, and use the basic tools and practices of project management within project work
  • demonstrate professionalism, integrity, ethical conduct, professional accountability and an awareness of professional engineering practice in a global and sustainable context
  • reflect on and take responsibility for their own learning and self-management processes, and manage their own time and processes effectively by regularly reviewing of personal performance as a means of managing continuing professional development and lifelong learning. 
     

Students who successfully complete the Bachelor of Computer Science will be able to:

  • apply a broad and coherent knowledge of computer science and software development in diverse contexts and domains using critical thinking and judgment
  • apply appropriate methods and contemporary tools to the scoping, analysis, design, construction, verification and operation of software systems
  • communicate proficiently to a variety of audiences, function as an effective member or leader of a team, and use the basic tools and practices of project management within project work
  • demonstrate professionalism, integrity, ethical conduct, professional accountability and an awareness of professional practice in a global context
  • apply problem analysis and decision-making methodologies to identify, design and implement solutions to industry relevant problems with intellectual independence
  • reflect on personal performance, learning, and self-management processes as a means of continued professional development and lifelong learning.

Career opportunities

The Bachelor of Engineering (Honours) course endeavours to incorporate appropriate graduate employability skills, developments in information technology, society’s changing work patterns, and sustainable design practices. Graduates of the Bachelor of Computer Science will have extensive skills in system development, particularly relating to medium- and large-scale projects. They will have developed experience in working on team projects and will have well-developed oral and written communication skills. Graduates of this double degree will have advanced techniques and skills in developing software for engineering plants and artefacts such as robots, CA D/CAM machinery, autonomous car, vehicles, aeroplanes, spacecraft and controlling software for manufacturing plants. Graduates may find employment as middle management in information technologies and software developers in communication technologies, cyber technologies, finance industry, research organisations and the defence industry.

Professional recognition

This degree program is designed to produce graduates who have the technological skills and knowledge expected of professional engineers. Graduates are eligible to apply for graduate membership of Engineers Australia.

This degree is accredited with the Australian Computer Society at the professional level.

Course rules

To qualify for the award of Bachelor of Engineering (Honours)/Bachelor of Computer Science students must complete 500 credit points comprising:

  • 14 core units of study (175 credit points),
  • 18 units from one Engineering major (225 credit points)*
  • 8 units from one Computer Science major (100 credit points)
  • EAT20008 Professional Experience in Engineering (Compulsory non-credit unit) **

*Note the Software Engineering Major is not available in this degree due to unit overlap.

Domestic students also have an opportunity to undertake a WIL Professional Placement. Please note that due to government regulation international students holding a student visa are not able to undertake Professional Placements in this course.

** Students who undertake a 6 or 12-month Professional Placement may receive an exemption for EAT20008. Where units are shared between majors and/or minors, students must choose an approved alternative unit.

Professional placements

Professional Placements are subject to a competitive selection process. Students who undertake a 12-month professional placement are subject to the following course rules and must complete 600 credit points comprising:

  • 16 core units of study (200 credit points),
  • 18 units from one Engineering major (225 credit points)
  • 6 units from one Computer Science major (75 credit points)
  • 4 units of study from the Professional Placement Co-Major (100 credit points)
  • EAT20008 Professional Experience in Engineering (Compulsory non-credit unit) **
     

Students who elect to undertake a 6-month professional placement are subject to the following course rules and must complete 550 credit points comprising:

  • 16 core units of study (200 credit points),
  • 18 units from one Engineering major (225 credit points)
  • 6 units from one Computer Science major (75 credit points)
  • 2 units of study from the Professional Placement Minor (50 credit points)
  • EAT20008 Professional Experience in Engineering (Compulsory non-credit unit) **
     

** Students who undertake a 6 or 12 month Integrated Professional Placement may receive an exemption for EAT20008. Honours merit calculation for Bachelor of Engineering (Honours) Honours merit calculation will be based on the averaged results of 12 units in the final two years of the course with the following descriptive outcomes:

Honours merit calculation

Honours merit calculation for Bachelor of Engineering (Honours) component in the Bachelor of Engineering / Bachelor of Computer Science double degree.

Honours merit calculation will be based on the averaged results of 12 units in the final two years of the course with the following descriptive outcomes:

  • BEng (Hons) with High Distinction; for students who achieve ≥ 80
  • BEng (Hons) with Distinction; for students who achieve 70 – 79
  • BEng (Hons) with Credit; for students who achieve 60 – 69
  • BEng (Hons); for students who achieve < 60
     

Students who transfer with advanced standing are required to undertake at least nine of these units at Swinburne, including all six outcome units, to qualify for an honours merit calculation. This honours merit calculation will be based only on units completed at Swinburne. If a student has not completed at least nine of the specified units, they will graduate with a BEng (Hons) as an award title, but not be eligible for a merit-based honours description.

Admission criteria

Information about Swinburne's general admission criteria can be found at Admissions at Swinburne - Higher Education webpage.

Entry requirements

A. Applicants with recent secondary education (within past three years)

ATAR

This course uses the ATAR as part of its selection considerations.

Guaranteed ATAR: if you receive an ATAR of 75 or higher and meet all the essential requirements for this course, you will be guaranteed an offer.

Educational history 

An applicant's entire academic history, including ATAR results, will be considered for entry into this course. 

Selection rank adjustments 

Selection ranks for this course will be calculated based on your ATAR with adjustments to overall study scores based on subjects studied, location of your home address, SEAS application, and participation In Swinburne's Early Leaders program. For further details about selection rank adjustments, see Admissions at Swinburne

Subject Adjustments 

A study score of 25 in Biology, Chemistry, any Information Technology, any Mathematics, Physics or Systems Engineering equals 2 aggregate points per study. Overall maximum of 15 points.

Meeting course prerequisites 

VCE units 3 and 4: a study score of at least 25 in any English (except EAL) or at least 30 in English as Alternate Language (EAL) or equivalent.

VCE Units 3 and 4: a study score of at least 20 in one of Maths: Mathematical Methods (CAS) or Maths: Specialist Mathematics or equivalent.

Bridging courses

Applicants who do not meet the mathematics prerequisites for this course will be required to successfully complete Swinburne's MathsLink: Methods bridging program.

ATAR profile for those offered places wholly or partly on the basis of ATAR in Semester 1 2023

ATAR-Based offers only, across all offer rounds ATAR
Excluding adjustment factors
Selection Rank
ATAR + any adjustment factors
Highest rank to receive an offer 97.9 99.15
Median rank to receive an offer 82.25 86.9
Lowest rank to receive an offer 63.35 73.1

B. Applicants with higher education study

Educational history 

An applicant's entire academic history, including results from previous higher education study will be considered for entry into this course. If previous higher education qualifications are incomplete, results must have been obtained in the last seven years. 

Meeting course prerequisites 

As for Year 12 or equivalent. 

STAT/Bridging courses 

Applicants who do not meet the English prerequisites can sit STAT Written English. STAT results are valid for two years.

Applicants who do not meet the mathematics prerequisites for this course will be required to successfully complete Swinburne's MathsLink: Methods bridging program. Mathematics prerequisites older than five years are not considered to have met course requirements.

C. Applicants with vocational education and training (VET) study

Educational history 

An applicant's entire academic history from the past seven years, including complete and/or incomplete post-secondary VET studies, will be considered for entry into this course. Only graded results will be considered. 

Meeting course prerequisites 

As for Year 12 or equivalent. 

STAT/Bridging courses 

Applicants who do not meet the English prerequisites can sit STAT Written English. STAT results are valid for two years.

Applicants who do not meet the mathematics prerequisites for this course will be required to successfully complete Swinburne's MathsLink: Methods bridging program. Mathematics prerequisites older than five years are not considered to have met course requirements.

D. Applicants with work and life experience

Entire academic record 

This course uses an applicant's entire academic record as part of its selection considerations, including an applicant's ATAR results from the last seven years can be considered for entry into this course. 

Meeting course prerequisites 

As for Year 12 or equivalent. 

STAT/Bridging courses 

Applicants who do not meet the English prerequisites can sit STAT Written English. STAT results are valid for two years.

Applicants who do not meet the mathematics prerequisites for this course will be required to successfully complete Swinburne's MathsLink: Methods bridging program. Mathematics prerequisites older than five years are not considered to have met course requirements.

Student profile

The table below gives an indication of the likely peer cohort for new students in this course. It provides data on students who commenced in this course in the most relevant recent intake period, including those admitted through all offer rounds and international students studying in Australia.

  Semester 1, 2023
Applicant background Number of students Percentage of all students
(A) Higher education study (includes a bridging or enabling course) <5 <5
(B) Vocational education and training (VET) study <5 <5
(C) Work and life experience (admitted on the basis of previous achievement not in the other three categories) <5 <5
(D) Recent secondary education:    
Admitted solely on the basis of ATAR (regardless of whether this includes the consideration of adjustment factors such as equity or subject bonus points) 14 74%
Admitted where both ATAR and additional criteria were N/A considered (e.g. portfolio, audition, extra test, early offer conditional on minimum ATAR) N/A N/A
Admitted on the basis of other criteria only and ATAR was N/A not a factor (e.g. special consideration, audition alone, schools recommendation scheme with no minimum ATAR requirement) 7 26%
International students <5 <5
All students 27 100%

Notes: 
N/A – Students not accepted in this category.

Interested in the Bachelor of Engineering (honours) / Bachelor of Computer Science?

From state-of-the-art facilities to opportunities to engage with industry – this course is designed with your future in mind. Let's get started.

View course page