Engineering Mathematics 2

MTH10007 12.5 Credit Points Hawthorn, Sarawak

Duration

  • 1 Semester

Contact hours

  • 60 hours

On-campus unit delivery combines face-to-face and digital learning.

Prerequisites

MTH10006

Corequisites

Nil

Aims and objectives

This unit of study aims to provide students with mathematical knowledge and skills needed to support their concurrent and subsequent engineering and science studies

Unit Learning Outcomes (ULO)

After successfully completing this unit, you should be able to:

  1. Determine simple operations involving determinants by hand; determine the solution to simultaneous equations using Cramer’s rule and inverse matrices; determine the rank of a matrix and its nullspace, determine linear (in)dependence of vectors (K2).
  2. Use vectors to determine cross products, and to describe straight lines and planes in three dimensions and the relationships between them, and to determine angular velocity and torque (K2, S1).
  3. Determine complex solutions of equations and rewrite complex numbers in various formats; determine roots of complex numbers, describe graphically complex numbers in the Argand plane (K2).
  4. Determine the solution to first order separable ODEs and linear differential equations using an integrating factor. Determine the solution to second order homogeneous and non--homogeneous linear differential equations with constant coefficients (K2).
  5. Describe graphically the surface for a given equation and determine the gradient and second derivative at any point on the surface (K2).
  6. Determine small changes in a function of several variables; Determine error of measurement estimates for a function of several variables (K2, S1).
  7. Determine derivatives of a function of several variables using the chain rule; determine the directional derivatives atpoint on a surface; determine stationary points on a surface (K2).
      8. Determine the curvature and radius of curvature of a given curve, and determine conversion between polar coordinates and parametric forms (K2).
 
Swinburne Engineering Competencies for this Unit of Study
This Unit of Study will contribute to you attaining the following Swinburne Engineering Competencies:
K2 Maths and IT as Tools: Proficiently uses relevant mathematics and computer and information science concepts as tools.
S1 Engineering Methods: Applies engineering methods in practical applications.