New measurements and new physics with spinor BEC

Lincoln Turner
Yingmei Liu, Steven Maxwell, Sebastian Jung
Eduardo Gomez, Adam Black
Paul Lett
Optical trapping

First suggested by Lekhotov (1978)
Demonstrated by Chu (1986)
Applied to BEC (Stamper-Kurn 1998)
All-optical BEC (Chapman 2001)

Some initial experiments on spinor BEC: domain formation and interactions (MIT group 1998-9)

Feshbach resonances
Tunable interactions
Molecule formation
Degenerate Fermi gases
BEC/BCS crossover
What is a spinor BEC?

Magnetic traps hold only one sign of spin projection.

\[\psi(r) = \sqrt{n(r)} e^{i\theta(r)} \]

Optical traps hold all spin projections

\[\psi(r) = \sqrt{n(r)} \begin{pmatrix} \xi_{-F}(r) \\ \vdots \\ \xi_{+F}(r) \end{pmatrix} \]

\[\xi^T(r)\xi(r) = 1 \]
Stern-Gerlach imaging

Put the BEC in a magnetic gradient
Spin components separate
Image with absorption imaging

Barrett, Sauer, Chapman
PRL 87 010404 (2001)
Symmetry and interactions

Interactions

For experimentalists

Contact potential but with $F+1$ scattering lengths

$$V(\mathbf{r}_1 - \mathbf{r}_2) = \delta(\mathbf{r}_1 - \mathbf{r}_2) \frac{4\pi\hbar^2}{m} \sum_{f=0,2,...}^{2F} a_f P_f$$

Odd f forbidden by Bose symmetry.

MDDI small but measurable for $F=1$

For theorists

Projection onto total spin
Spin-mixing oscillations

$^{23}\text{Na } c > 0$

NIST

Black, Gomez, LDT, Jung, Lett
PRL 99 070403 (2007)

$^{87}\text{Rb } c < 0$

GATech

Nat Phys 1 111 (2005)
F=1 interactions

Only one spin-changing interaction allowed is

\[|+1> \leftrightarrow |-1> \leftrightarrow |0> |0> \]

\[V(r_1 - r_2) = \delta(r_1 - r_2)(c_0 + c_2 F_1 \cdot F_2) \]

Order parameter has three components

\[\psi(r, t) = \sqrt{n(r)} \begin{pmatrix} \xi_{-1}(r, t) \\ \xi_0(r, t) \\ \xi_{+1}(r, t) \end{pmatrix} \]

Three coupled Gross-Pitaevski equations:

\[i\hbar \frac{\partial \psi_1}{\partial t} = L_1 \psi_1 + c_2 (n_1 + n_0 - n_{-1}) \psi_1 + c_2 \psi_0^2 \psi_{-1}^*, \]

\[i\hbar \frac{\partial \psi_0}{\partial t} = L_0 \psi_0 + c_2 (n_1 + n_{-1}) \psi_0 + 2c_2 \psi_0^* \psi_1 \psi_{-1}, \]

\[i\hbar \frac{\partial \psi_{-1}}{\partial t} = L_{-1} \psi_{-1} + c_2 (n_{-1} + n_0 - n_1) \psi_{-1} + c_2 \psi_0^2 \psi_{+1}^*, \]
Topological defects galore

- Spin textures
- Spin vortex lattices
- Coreless vortices
- Nematic disclinations
- Spin knots
- Spin solitons
Single mode approximation

Assume that the spatial wavefunction is:

- constant
- identical for all three spin components

\[
\psi(r, t) = \sqrt{n(r)} \left(\begin{array}{c}
\xi_{-1}(t) \\
\xi_0(t) \\
\xi_{+1}(t)
\end{array} \right)
\]

Further break up into populations \(\rho \) and phases \(\theta \)

\[
\psi(r, t) = \sqrt{n(r)} \left(\begin{array}{c}
\sqrt{\rho_{-1}(t)} e^{i\theta_{-1}(t)} \\
\sqrt{\rho_0(t)} e^{i\theta_0(t)} \\
\sqrt{\rho_{+1}(t)} e^{i\theta_{+1}(t)}
\end{array} \right)
\]
Magnetisation and the linear Zeeman effect

Magnetisation is \(m = \rho_+ - \rho_- \)

Constant of the motion

Populations normalised

\[
\rho_+ + \rho_0 + \rho_- = 1
\]

Whole system described by:

One population, say \(\rho_0(t) \)

Overall phase \(\theta = \theta_+ + \theta_- - 2\theta_0 \)

\[
E = c\rho_0 \left(1 - \rho_0 + \sqrt{(1 - \rho_0)^2 - m^2 \cos \theta} \right) + \delta(1 - \rho_0)
\]

Spin interaction

\(c > 0 \) for antiferromagnetic \(^{23}\text{Na}\)
Effective Hamiltonian for F=1 in SMA

\[E = c \rho_0 \left(1 - \rho_0^2 + \sqrt{(1 - \rho_0^2)^2 - m^2 \cos \theta} \right) + \delta (1 - \rho_0^2) \]

Spin interaction

Quadratic Zeeman
Destructive Stern-Gerlach measurements

![Graph showing magnetic field in μT on the x-axis and oscillation period in ms on the y-axis. The graph exhibits a peak and a spread around the data points.]
Faraday measurement of transverse magnetisation

Spin precesses around bias field

Polarization alternately rotated left and right.

No rotation when spin is perpendicular to beam.

Put cube at 45° to input polarization, get bright field signal that is nulled for no rotation.

Net effect is a signal oscillating at the Larmor frequency.
Faraday measurement, details

Experimentalist here

Theorists here

Calibrated aperture on xy stage

Image of BEC ~0.5 mm

2 mm

20 μm

Compound lens:
1.8x relay, achromatic pair
11x telescope
20x total magnification

\[\theta_{\text{rot}} \propto \int F_x \, dx \]
Faraday measurement: spin oscillations

Magnetic field = 26 uT

Spectral power density
Spin oscillations: period divergence

Magnetization = 0
Decoherence in the F=1 SMA system
Single-mode ground state
Non-linear Landau-Zener tunneling

\[H(\gamma) = \begin{pmatrix} \frac{\gamma}{2} & -\frac{V}{2} \\ -\frac{V}{2} & -\frac{\gamma}{2} \end{pmatrix} \]

Lucas Rutten, Monash
Summary: single-mode spin-1 system

We now understand:

- Free evolution
- Ground state ...
- ... and how it gets there (decoherence)
- Adiabatic(ish) evolution
Anything else?

Shapiro steps

Phenomenology in Josephson systems
Add a magnetic field dither
Macroscopic Quantum State Trapping (MQST)

Spin echoes of magnetic dipole-dipole interaction (MDDI)

FIG. 3. Microwave power at 9000 Mc/sec (A) and 24000 Mc/sec (B) produces many zero-slope regions spaced at $h v / 2 e$ or hv / e. For A, $hv / e = 38.5 \mu$W, and for B, 103.

\[\omega_1 t = \begin{align*}
\text{(a)} & : 0.75 \\
\text{(b)} & : 2.4 \\
\text{(c)} & : 4.1 \\
\text{(d)} & : 5.8 \\
\text{(e)} & : 7.3 \\
\text{(f)} & : 9.1 \\
\text{(g)} & : 10.6 \\
\text{(h)} & : 12.8
\end{align*} \]
Beyond mean-field: Spinor squeezing

\[\mathcal{E} = c\rho_0[(1 - \rho_0) + \sqrt{(1 - \rho_0^2) - m^2 \cos \theta}] + \delta(1 - \rho_0). \]

\[\mathcal{H}_{\text{eff}} = \frac{c}{2} \left[\hat{\rho}_0 \sqrt{(1 - \hat{\rho}_0^2) - m^2 \cos \hat{\theta}} + \cos \hat{\theta} \hat{\rho}_0 \sqrt{(1 - \hat{\rho}_0^2) - m^2} \right] + (1 - \hat{\rho}_0)(c\hat{\rho}_0 + \delta). \]

Chang et al, PRL 99 080402 (2007)
Beyond single mode

^{23}Na Antiferromagnetic has lower energy

Won't form domains:
Robins et al. PRA 64 021601R (2001)
Zhang et al. PRL 95 180403 (2005)

Can form domains:
Alexander et al. PRA 78 023632 (2008)

^{87}Rb Ferromagnetic has lower energy

(Stern-Gerlach)
Application: micromagnetometry
Conclusions

Optical trapping \Rightarrow spinor order parameter

Single-mode $F=1$ model

Faraday measurement
- Well adapted to measuring a single spatial mode
- “NMR” extensions, spinor squeezing ...

Microscale atomic magnetometers