
CENTRE FOR
TRANSFORMATIVE
INNOVATION
Working Paper Series

Working Paper No 5/18
November 2018

Representing Text as
Abstract Images Enables an
Image Classifier To Perform
Text Classification for Name
Disambiguation

Stephen Petrie
T’Mir Julius

Representing text as abstract images enables an image classifier to perform text
classification for name disambiguation

Stephen M. Petrie
Swinburne University of Technology

Hawthorn, Victoria, Australia
spetrie@swin.edu.au

T’Mir D. Julius
The University of Melbourne
Parkville, Victoria, Australia

Abstract

Patent data are often used to study the process of inno-
vation and research, but patent databases lack unique iden-
tifiers for individual inventors, making it difficult to study
innovation processes at the individual level. Here we in-
troduce an algorithm that performs highly accurate disam-
biguation of inventor names in US patent data, producing
a set of unique identifiers with an associated precision of
99.41% and recall of 98.76%. The algorithm includes a
novel method for converting text-based record data into ab-
stract image representations — i.e. text from any given pair-
wise comparison between two inventor records is converted
into a 2D colour image. We then train an image classifica-
tion neural network to discriminate between pairwise com-
parison images that correspond to either of two classes:
matched records (same inventor) or non-matched records
(different inventors). String similarities or differences be-
tween each pair of records produce spatial and colour fea-
tures in the associated abstract image representation, and
the neural network learns which image features are useful
for discriminating between the two classes. The resulting
disambiguation algorithm produces highly accurate results,
out-performing other inventor name disambiguation stud-
ies on US patent data. Our record linking algorithm could
easily be adapted to other record linking problems, such as
name disambiguation within academic publications. More
broadly, a key contribution of this work is that our novel
method of converting a string of text into an abstract image
representation could potentially be applied to many other
problems, as it allows image-based processing techniques,
such as image classification neural networks, to be applied
to text-based comparison problems, such as name disam-
biguation.

1. Introduction

Databases of patent applications and academic publica-
tions can be used to investigate the process of research and
innovation. For example, patent data can be used to identify
prolific inventors [3] or to investigate whether mobility in-
creases inventor productivity [6], and academic publication
data can be used to compare the scientific impact of open
access journals relative to subscription journals [1]. How-
ever, the names of individuals in large databases are rarely
distinct, and consequently individuals in such databases are
not uniquely identifiable. For example, an individual named
“Chris Jean Smith” may have patents under slightly differ-
ent names such as “Chris Jean Smith”, “Chris J. Smith”,
“C J Smith”, etc. . . There may also be other distinct inven-
tors with patents under the same or similar names, such as
“Chris Jean Smith”, “Chris J. Smith”, “Chris Smith”, etc. . .
Thus it is ambiguous which names (and hence patents)
should be assigned to which individuals, and this ambigu-
ity makes it difficult to investigate research questions that
involve individual authors/inventors. Resolving this identi-
fiability issue and assigning unique identifiers to individuals
— a process often referred to as name disambiguation — is
important for research that relies on such databases.

However, manually disambiguating large databases that
contain, say, millions of records, is infeasible. Machine
learning algorithms have been used increasingly in recent
years to perform automated disambiguation of inventor
names in large databases (e.g. [14, 22, 10]). See Ventura et
al. [22] for a review of supervised and semi-supervised ma-
chine learning approaches to disambiguation, as well as un-
supervised approaches. These more recent machine learn-
ing approaches have generally out-performed more tradi-
tional rule- and threshold-based methods, but they have gen-
erally use feature vectors containing several pre-selected
measures of string similarity as input for their machine
learning algorithms. That is, the researcher generally pre-
selects a number of string similarity measures which they
believe may be useful as input for the machine learning al-

1

gorithm to make discrimination decisions.
Here we intoduce a novel approach of representing text-

based data which enables a supervised machine learning
algorithm to learn its own features from the data, rather
than selecting from a number of pre-defined string similar-
ity measures chosen by the researcher. To do this, we treat
the name disambiguation problem primarily as a classifica-
tion problem, where pairwise comparisons between records
are assessed as being either matched (same inventor) or non-
matched (different inventors), an approach used in previous
inventor name disambiguation studies [21, 15, 14, 22, 10].
Then, for a given pairwise comparison between two inven-
tor records, we apply our novel text-to-image representa-
tion method to convert the associated text strings from those
records into a 2D colour image that represents the under-
lying text data. We describe the text-to-image conversion
method in detail in Section 4.1 (see Figure 1 in that section
for an example of text-to-image conversion).

Our method of representing text-based record compar-
isons as abstract images also enables image processing al-
gorithms, such as image classification neural networks, to
be applied to text-based comparison problems, such as in-
ventor name disambiguation. To demonstrate this, we mod-
ify a common Convolutional Neural Network (CNN) orig-
inally designed to classify images amongst 1,000 different
classes [12] to make pairwise comparison decisions, in or-
der to match inventor names in patent records, thus tak-
ing advantage of that CNN’s powerful feature learning and
pattern recognition capabilities. String similarities or dif-
ferences between each pair of records produce spatial and
colour features in the associated abstract image representa-
tion. The neural network is then able to learn which image
features are useful for discriminating between matched and
non-matched record pairs.

Our novel text-to-image conversion method also repre-
sents the data in such a way that the neural network is
capable of accounting for spelling variations and word-
ordering differences when discriminating between matches
and non-matches, as well as potentially ignoring common
(and hence non-specific) words that are not useful for dis-
crimination decisions.

When combined with deduplication and blocking pro-
cedures that effectively reduce the complexity of the dis-
ambiguation problem, as well as a clustering algorithm
that converts pairwise match/non-match probabilities into
groups of matched inventor records, the resulting disam-
biguation algorithm generates highly accurate results, such
as a precision of 99.41% and a recall of 98.76%.

2. Related Work
Inventor name disambiguation studies have often used

measures of string similarity in order to make automated
discrimination decisions. For example, counts of n-grams

(sequences of n words or characters) can be used to vec-
torise text, with the cosine distance between vectors pro-
viding a measure of string similarity [19, 18]. Measures
of edit distance consider the number of changes required to
transform one string to another, such as the number of ad-
ditions, subtractions, or substitutions used in the calculation
of the Levenshtein distance [13, 17], or of other operations
such as transpositions (the switching of 2 letters) used in the
calculation of the Jaro-Winkler distance [8, 23]. Phonetic
algorithms, such as Soundex, recode strings according to
pronunciation, providing a phonetic measure of string sim-
ilarity [19].

Measures of string similarity such as these have been
used to guide rule- and threshold-based name disambigua-
tion algorithms (e.g. [15, 16]). They can also be used within
feature vectors inputted into machine learning algorithms.
For example, Kim et al. [10] use such string similarity fea-
ture vectors to train a random forest to perform pairwise
classification. Ventura et al. [22] reviewed several super-
vised, semi-supervised, and unsupervised machine learning
approaches to inventor name disambiguation, as well as im-
plementing their own supervised approach which utilised
selected string similarity features as input to a random for-
est model.

CNNs have been used extensively in recent years in im-
age processing applications, often exhibiting state-of-the-
art level performance (e.g. [12, 20]). Also, neural networks
(usually CNNs) have been used previously to assess pair-
wise comparison decisions — e.g. in the case of pairs of:
images [11], image patches [27, 26], sentences [25], images
of signatures [2], and images of faces [7].

These networks are generally set up such that multi-
ple images are provided simultaneously as input, such as
in the case of siamese neural networks where two identi-
cal sub-networks are connected at their output [2, 11]. In
this work we generate a single image for a given pairwise
record comparison, meaning that any image classification
network could potentially be adapted with minimal modi-
fication to classify text-based record pairs as matched/non-
matched. We demonstrate this using the seminal “AlexNet”
image classification network [12].

3. Data
We use a combination of two labelled datasets in this

work to train the neural network and assess its perfor-
mance. Each dataset was derived from the United States
National Bureau of Economics Research (NBER) Patent Ci-
tation Data File [5] by separate authors; a labelled dataset
of Israeli inventors generated by Trajtenberg, Shiff, and
Melamed [21] (the “IS” dataset), and another labelled
dataset that focuses on patents filed by engineers and sci-
entists compiled by Ge, Huang & Png [4] (the “E&S”
dataset). These two datasets were combined with United

States Patent and Trademark Office (USPTO) patent data
as part of the PatentsView Inventor Disambiguation Work-
shop1 hosted by the American Institutes for Research (AIR)
in September of 2015. Labelled data were matched by an
AIR research team to USPTO bulk patent data, in order to
recover additional patent data not provided by the labelled
dataset creators. 80% of the labelled data were provided to
participants of the workshop, with the remaining 20% being
retained for algorithm evaluation by the workshop organis-
ers (not used in this work).

Each labelled dataset contains unique IDs (UIDs) that
identify all inventor-name records from different patents be-
longing to each individual inventor. We also extacted sev-
eral other variables from each inventor-name record in the
bulk USPTO patent data to use in our disambiguation algo-
rithm: first name, middle name, last name, city listed in ad-
dress, international patent classification (IPC) codes which
specify subjects/fields covered by the patent, assignees (i.e.
associated companies or institutes), and co-inventor names
on the same patent.

4. Disambiguation Algorithm
Our novel inventor disambiguation algorithm involves

the following main steps:

1. Duplicate removal: remove duplicate records from
the patent data.

2. Blocking: block (or ”bin”) all names by last name, and
also by first name in some cases. This improves the ac-
curacy and efficiency of training, reduces the number
of false positive errors, and improves computational
efficiency.

3. Genarate pairwise comparison-map images: con-
vert text from each pairwise record comparison into
a 2D RGB bitmap image representation.

4. Train neural network: use such 2D images generated
from manually labelled data to train a neural network
to classify whether a given pairwise record compari-
son is a match (same inventor) or non-match (different
inventors).

5. Classify pairwise comparison-map images: deploy
the trained neural network to classify pairwise com-
parison images generated from the bulk patent data,
producing a match probability for each record pair.

6. Convert pairwise match probabilities into clusters:
convert the pairwise match/non-match probabilities
generated by the neural network into clusters of inven-
tors — i.e. linked groups of inventor-name records that

1http://www.patentsview.org/community/workshop-2015

Figure 1. Constructing a string-map image. The first four im-
ages show the sub-maps that are summed to construct the final
string-map image (rigth-most image) for the example word “JEN”.

each belong to a distinct individual inventor. Assign-
ing a unique ID (UID) to each of these groups then
leads to a single set of disambiguated inventor names.

Note that the main purpose of the first two steps is to reduce
the complexity of the disambiguation problem. That is, if
we were to investigate all possible pairwise comparisons,
then the ⇡ 12.4 million inventor name records in the bulk
data would require that ⇡ 77 trillion such 2-way compar-
isons be assessed. To improve the computational tractabil-
ity of the problem, we (1) remove duplicate records and
(2) separate the bulk patent data into related clusters (of-
ten referred to as “blocking” or “binning”). This reduces the
number of pairwise comparisons that need to be assessed by
the neural network, decreasing run-time and also helping to
reduce the number of false positive matches obtained by the
algorithm. We describe steps 1 and 2 in greater detail in the
Supplementary Material, Appendices A and B respectively.
Steps 3–6 are described in detail below.

4.1. Comparison-map images (representing text as
2D colour images)

Our intent is to assess all possible within-block pairwise
comparisons between patent-inventor records, classifying
each comparison as either a match or non-match. We use
a CNN that was originally designed for image classification
— i.e. the seminal “AlexNet” network [12] — and adapt it
to perform such binary classification. We could have used
any image classification neural network, but chose to use
AlexNet since it is a seminal image classification network
which has been re-used as a benchmark in many later re-
search papers. We do not expect that choosing a more ad-
vanced image classification network would affect our re-
sults substantially, as there are only two classes in our clas-
sification problem and we obtain very high classification ac-
curacy after training.

In order to perform text-based classification using an
image classification neural network, we introduce a novel
method of converting any string of text into an abstract im-
age representation of that text, which we apply to pairwise
comparisons between inventor-name records. This novel
text-to-image conversion method firstly involves defining a
specific 2-dimensional character layout that we will refer to
as a “string-map” — i.e. a grid of pixels, where each pixel
corresponds to a particular letter in the English alphabet (see

Figure 2. Larger string-map for assignees and co-inventors,
and IPC-map. The larger string-map used to convert a given list
of assignees or co-inventors into an abstract image representation
(left), and the IPC-map used to convert a given list of IPC classes
into an abstract image representation (right).

the layout within each of the five images in Figure 1). For
a given word (e.g. “JEN”), we then add a particular colour
(e.g. red) to the pixels on the map corresponding to each let-
ter within the word, as well as to any pixels that fall within
straight lines connecting the letters (see sequence of images
in Figure 1). In particular, we add colour to the pixels of
the first and last letters (Figure 1, left-most image), and to
all pixels in a line connecting each two-letter bi-gram (e.g.
there are two bi-grams in “JEN”: “JE” and “EN”). To high-
light the beginning of each string-map, we also repeat the
process for the first bi-gram only (e.g. “JE”) in blue, rather
than red (Figure 1, second image from the right).

The string-map shown in Figure 1 is used for the inven-
tor’s first name, middle name, last name, and the city listed
in their address. Since a given patent-inventor record can
have multiple assignees and/or co-inventors, we use a larger
string-map for those fields (see Figure 2, left image), which
reduces the possibility that pixels will become saturated in
cases where many assignees (or co-inventors) are overlayed
onto the same string-map. We also add less colour to each
pixel in these larger string-maps compared with the smaller
string-maps, again to reduce the possibility of saturation.
For international patent classification (IPC) codes, which
contain numbers as well as letters, we use a different string-
map shown in Figure 2 (right image; an “IPC-map”).

For a given inventor name record, the image representa-
tions of first name, middle name, last name, city, IPC codes,
co-inventors, and assignees are arranged as shown in Figure
3, which we refer to as a “record-map”.

We compare any two inventor name records by overlay-
ing (summing) each corresponding record-map in a differ-
ent colour (one in red, the other in green) onto the same
image, which we refer to as a “comparison-map” (Figure
4). Since red and green combined (summed) produce yel-
low in the RGB colour model, then if the two words are
similar, one distinctive feature of the resulting comparison
image will be that it will contain a lot of yellow (e.g. Fig-
ure 4, left image). If the two records are dissimilar, there
will be more red and green in the image due to less over-

Figure 3. Record-map layout. This shows the positioning of each
wordmap and IPC-map within a given record-map.

lap between the two record-maps (e.g. Figure 4, right im-
age). When training on labelled comparison-map images,
we expect that the neural network will learn to identify
which image features are important for discriminating be-
tween matched/non-matched patent-inventor name records.
That is, the neural network’s learned pattern recognition on
comparison-map images will essentially recognise under-
lying text patterns which are present in the patent-inventor
name records, such as similarities or differences between
the last names of each of the two records, etc. . .

Note that we chose the particular layout of the letters in
the string-map shown in Figure 1 heuristically, such that
vowels are positioned towards the centre of the grid, in
an attempt to make it more straightforward for the neu-
ral network to learn which features are associated with
matches/non-matches. Our rationale for this is that we ex-
pect (1) more saturation to occur in the pixels towards the
centre of each string-map, and (2) vowels to be generally
less important than consonants for identifying particular
words and distinguishing them from other words. We also
sought to group letters with similar phonetic interpretations,
such as “S” and “Z”, close to each other. We test how the
heuristic layout performs compared with several alternative
random layouts later in Section 5.4.

4.1.1 Benefits of representing text-based records as
comparison-map images

Note that the above method of converting text into a 2D
RGB bitmap for neural network-based image classification
is likely to be more computationally expensive than most
name disambiguation algorithms. However, the method
also has several benefits:

• the powerful classification capabilities of previous im-
age classification neural networks can be utilised for
text-based record matching, with minimal modifica-
tion,

Figure 4. Comparison-map examples. Two examples of comparison-map images. The left comparison-map image was generated using
two mock matched records (Table 1, rows 1 and 2), and the right image from two mock non-matched records (Table 1, rows 1 and 3).

Table 1. Mock records of three patent inventor name instances. Rows 1 and 2 are patent-inventor name instances for the same mock
inventor, while row 3 is a different inventor.

Name IPC codes City Co-inventors (last names) Assignees

Emmett Lathrop Brown A10C, A10D Hill Valley McFly, Clayton-Brown, Sanchez Science Solutions
Emmett L. Brown A11E Hill Valley Sanchez Science Solutions Pty. Ltd.
James T. Brock G03C Melbourne Edison, Da Vinci Swinburne University of Technology,

The University of Melbourne

• the neural network learns its own features from the
data, rather than learning from a selection of pre-
defined string similarity measures chosen by the re-
searcher,

• minor spelling variations and errors do not alter the re-
sulting string-map very much, and the neural network
has the potential to learn to recognise such minor fea-
tures in resulting comparison-map images as relatively
unimportant features (that are not necessarily associ-
ated with a non-match),

• if two matched records have different word ordering
(i.e. words are translated to different positions in
the string, such as when a shared co-inventor name
appears in different positions on the two different
patents), the resulting comparison-map image is still
likely to be recognisable as a match by the neural net-
work, because overlapping (summing) green from one
record-map and red from the other generates yellow
regardless of word order,

• the neural network has the potential to learn to recog-
nise and ignore certain shapes corresponding to com-
mon words that are not very useful for discriminat-
ing between matches and non-matches (such as “Ltd”,
“LLC”, “Incorporated”, etc. . .),

• we show later in Section 5.4 that our novel disam-
biguation algorithm performs well under multiple dif-
ferent choices of alternative string-maps other than
those shown in Figures 1 & 2, suggesting that the neu-
ral network has quite robust pattern recognition of fea-
tures within our comparison-map representations.

These benefits of our text-to-image conversion method
could potentially apply to many other text-based compari-
son problems, in addition to the name disambiguation prob-
lem that we address in this work.

4.2. Modifications to neural network architecture
The neural network we use in this study is based

on the CNN developed by Alex Krizhevsky et al. [12]

Hyperparameter AlexNet This work Rationale for modification
Number of neurons in input layer 224⇥ 224⇥ 3 = 150, 528 31⇥ 31⇥ 3 = 2, 883 Smaller size of input image bitmaps

(note that we did not crop our images)
Kernel size in first convolutional layer 11⇥ 11⇥ 3 3⇥ 3⇥ 3 Smaller-scale features to learn
Stride length for kernels in first convo-
lutional layer

4 1 Smaller kernel size

Number of neurons in output layer 1,000 2 Fewer classes

Table 2. Hyperparameters that differ between the two network architectures. See Krizhevsky et al. [12] for more details on the network
architecture and corresponding hyperparameters.

(often referred to as “AlexNet”). AlexNet was origi-
nally designed to classify colour images (224⇥224⇥3-pixel
bitmaps) amongst 1,000 different classes (container ship,
motor scooter, leopard, mite, etc. . .). Here we modify
the network architecture to enable classification of pair-
wise comparison-map images (31⇥31⇥3-pixel bitmaps)
into two classes (match/non-match), by altering several hy-
perparameters as shown in Table 2.

We use the NVIDIA Deep Learning GPU Training Sys-
tem2 (DIGITS) v2.0.0 implementation of AlexNet, using
the Caffe backend [9]. We use the default solver (stochastic
gradient descent), batch size (100), and number of train-
ing epochs (30). Rather than use the default learning rate
(0.01) we use a sigmoid decay function to progressively de-
crease the learning rate from 0.01 to 0.001 over the course
of the 30 training epochs, as initial testing indicated that this
produced slightly higher accuracies. Note that the default
settings of the DIGITS v2.0.0 implementation of AlexNet
also transform the input data by (1) altering input images
to show the deviation from the mean of all input images
(by subtracting the mean image from each input image), (2)
randomly mirroring input images, and (3) taking a random
square crop from the input image. The main purpose of
performing such transformations is to introduce variability
into the training images that are expected to be present in
the unlabelled data, however we do not use any of those
transformations in this work because our images are much
more self-consistent than those in the ImageNet database.

The output layer of AlexNet is a 1,000-neuron softmax
layer, which generates a probability distribution across the
1,000 possible classes. Our modified network has a 2-
neuron softmax output layer which, for a given inputted
pairwise comparison image, produces a probability distri-
bution across the two possible classes (match/non-match).

4.3. Converting pairwise probabilities into inventor
groups, and assigning UIDs

After running the trained neural network on bulk patent
data, each within-block pairwise comparison has an asso-
ciated match/non-match probability. To assign unique IDs
(UIDs) to the bulk data, we convert these pairwise probabil-

2https://developer.nvidia.com/digits

ities into linked (matched) “inventor groups”. Each inventor
group is a linked cluster of inventor name records which all
refer to the same individual. The clustering algorithm is de-
scribed in Appendix C. Once the clustering algorithm has
been applied to each block, every patent-inventor name in-
stance has an associated UID, and the disambiguation pro-
cess is complete.

5. Results
Here we firstly describe our procedure for dividing our

labelled datasets into training and test data. We then eval-
uate our inventor disambiguation algorithm, compare those
results to previous studies, and test alternative string-map
layouts.

5.1. Datasets
We use the IS and E&S labelled datasets to train

the neural network to discriminate between matched and
non-matched pairwise comparisons. Each of the labelled
datasets are separated into 80% training data (used to train
the neural network) and 20% test data (used to assess algo-
rithm performance). The split is made by randomly select-
ing 80% of labelled inventor UIDs and using the associated
records as the training dataset, while the remainder of all
records are used as the test dataset. We use 75% of the
training data to train the network, and the remaining 25% to
perform validation assessments during training in order to
monitor potential overfitting.

Duplicate removal and blocking is then performed on the
labelled data, and comparison-map images are generated
for all possible pairwise record comparisons within each
block (723,178 comparison-maps for training and 144,552
comparison-maps for testing).

We generate comparison-maps for all possible pairwise
within-block comparisons in the labelled data and the bulk
data (stored as 3D numerical arrays for computational effi-
ciency). The trained neural network is then deployed on the
bulk patent data, generating match/non-match probabilities
for all pairwise within-block comparisons in the bulk data
(112,068,838 comparison-maps). We experimented with
multiple different values for the pairwise comparison prob-
ability threshold, p̄, and linking proportion threshold, l̄ (see

Appendix C), based on evaluating the trained neural net-
work on the labelled test data (prior to processing the bulk
data). Different p̄ and l̄ values produce different trade-offs
between precision and recall, and we use values that pro-
duce an optimal trade-off (we state those values whenever
quoting results from a given run of our disambiguation al-
gorithm).

5.2. Evaluation

To evaluate the performance of the disambiguation algo-
rithm, we use the labelled IS and E&S test data to estimate
precision, recall, splitting, and lumping based on numbers
of true positive (tp), false positive (fp), true negative (tn),
and false negative (fn) pairwise links within the labelled test
data, as follows [22, 10]:

Precision =
true positive matches
all positive matches

=
tp

tp + fp
(1)

Recall =
true positive matches

total true matches
=

tp
tp + fn

(2)

Splitting =
false negative non-matches

total true matches
=

fn
tp + fn

(3)

Lumping =
false positive matches

total true matches
=

fp
tp + fn

(4)

Higher values are better for precision and recall, while
lower values are better for lumping and splitting.

Note that obtaining a very high score on just one of these
metrics is not necessarily desirable, as there is a trade-off
between precision and recall that must be considered (or,
equivalently, a trade-off between lumping and splitting).
For example, we can easily obtain 100% recall by simply
matching every single pair of records, but the precision of
such an algorithm would be extremely low. Or we could ob-
tain 100% precision by requiring that all record fields must
be exactly identical for a matched pair, but then recall would
be very low. Thus we also estimate the pairwise F1 score,
a measure that attempts to take into account the trade-off
between precision and recall:

F1 = 2⇥
Precision · Recall
Precision + Recall

(5)

Given that F1 takes into account the trade-off between pre-
cision and recall, it is the primary measure we use when
comparing different disambiguation algorithms.

Table 3. Comparison of the performance of two example runs of
our disambiguation algorithm (the runs with highest F1 and high-
est precision), relative to that of other inventor name disambigua-
tion studies of bulk US patent data. All values in percentages (%).

Method [p̄; l̄] Split Lump Recall Precision F1

Li20143 3.26 2.34
Ventura2015 2.31 1.64
Morrison2017 92 98 95
Yang2017 96.15 99.61 97.85
Ours [0.02; 0.1] 1.33 0.51 98.67 99.48 99.07
Ours [0.01; 0.4] 2.87 0.28 97.13 99.71 98.40

Table 4. Comparison of the performance of our disambiguation
algorithm relative to that of Yang et al. [24] results evaluated on
the IS and E&S labelled datasets. All values in percentages (%).

Method Recall Precision F1

Yang2017 (IS) 83.79 99.57 91.00
Yang2017 (E&S) 90.31 99.87 94.85
Ours [0.02; 0.1] 98.67 99.48 99.07
Ours4 [0.01; 0.4] 96.84 99.84 98.32

5.3. Disambiguation algorithm performance

The precision, recall, splitting, lumping, and F1 esti-
mates for the two runs of our disambiguation algorithm
which generated the highest F1 and highest precision are
shown in Table 3 (bottom two rows). We also show the best
results from other state-of-the-art studies involving name
disambiguation of bulk USPTO patent data in Table 3 (in
studies that quote multiple F1 scores we show the results
with the highest F1 score). Note that we do not include
results from the Kim et al. [10] US patent disambiguation
study in Table 3, because we found that their blocking pro-
cedure adversely affects their estimates of recall (see Ap-
pendix B.1). Our inventor disambiguation algorithm out-
performs other state-of-the-art disambiguation studies in
terms of obtaining the highest F1 score.

It is important to note that the results from other stud-
ies shown in Table 3 use different labelled datasets to the
IS and E&S datasets used in this work, making compari-
son difficult. This is a common problem with comparing
the performance of different inventor name disambiguation
studies. For Yang et al. [24], the results we quote in Table 3
are their highest F1 results, which they evaluated using the

3Note that Ventura et al. [22] also use their “optoelectronics” labelled
dataset to evaluate the Li et al. [14] disambiguation algorithm, obtaining
2.49% splitting error and 0.39% lumping error on the full optoelectronics
dataset, but much poorer performance on a random sample of the opto-
electronics labelled data, with 10.54% splitting error and 1.21% lumping
error.

4Note that these results were obtained using a randomly-generated
string-map character order (see Section 5.4).

Table 5. Comparison of results from alternate string-map layouts. Each row shows the highest F1 result obtained for that string-map layout,
with the corresponding pairwise comparison probability threshold (p̄) and linking proportion threshold (l̄) shown in square brackets.

String-map layout [p̄-threshold; l̄-threshold] Splitting Lumping Recall Precision F1

Random character order [0.03; 0.05] 1.24 0.58 98.76 99.41 99.09
Random character order and layout [0.05; 0.05] 1.23 0.70 98.77 99.29 99.03
Random character order and layout, small string-maps [0.05; 0.2] 1.54 0.47 98.46 99.52 98.99
Heuristic character order and layout [0.02; 0.1] 1.33 0.51 98.67 99.48 99.07

“academic life sciences” labelled dataset, a relatively clean
labelled dataset that is relatively easy to disambiguate [22].
However, Yang et al. [24] also used the IS and E&S la-
belled datasets to evaluate their algorithm, and we compare
those results to our results in Table 4. This more equitable
comparison shows that our disambiguation algorithm out-
performs theirs even moreso when evaluated using the same
labelled datasets, as our F1 score is much higher. Note that
the Yang et al. [24] result evaluated on the E&S dataset dis-
plays slightly higher precision than ours, but this comes at
the cost of very low recall and hence a much lower F1 score.
Our precision-recall trade-off is much better, as our highest
precision result of 99.84% (Table 4, bottom row; obtained
using a randomly-generated string-map character order —
see Section 5.4 below) has much higher recall than that of
Yang et al. [24], and hence, much higher F1.

5.4. Testing different string-maps

Here we compare the performance of our heuristically-
determined string-map layout (Section 4.1) to multiple
pseudo-random string-map layouts. For a given random
string-map (or IPC-map), we keep the pixel co-ordinates of
each string-map identical to that of the associated heuristic
layout, but randomise the position of each character. This
randomised string-map is shown in the Supplementary Ma-
terial, Appendix D, Figure S1. We also try another alterna-
tive string-map in which we randomise both the pixel co-
ordinate layout and character positions (Appendix D, Fig-
ure S2), as well as another alternative with random layout
and character positions (Appendix D, Figures S3 & S4) in
which we use the smaller 5⇥ 5 pixel string-map (Figure 1)
for co-inventors and assignees, rather than the larger string-
map (Figure 2, left image).

Estimates of precision, recall, splitting, lumping, and F1
are shown in Table 5. For each alternative string-map lay-
out, we ran the algorithm multiple times using different set-
tings of the comparison probability threshold (p̄) and link-
ing proportion threshold (l̄), and only show results from the
run which produced the highest F1 score. Results obtained
from each of the alternative random string-maps are very
similar to those obtained using the heuristically-determined
layout (F1 scores range from 98.99% to 99.09%). Thus,
using a random string-map layout appears to have very lit-
tle effect on the ability of the neural network to learn to

recognise patterns in comparison-maps which are useful for
discriminating between matched and non-matched records.
This suggests that our method of converting text into ab-
stract image representations, and using a neural network
to classify those images, is quite robust to such changes in
string-map layout.

6. Conclusion

Our novel inventor name disambiguation algorithm pro-
duces highly accurate results, out-performing other state-
of-the-art inventor disambiguation algorithms with an F1
score of 99.09%, a precision of 99.41%, and a recall of
98.76%. Our text-to-image conversion method also rep-
resents the data in such a way that the neural network is
capable of accounting for spelling variations and word-
ordering differences when discriminating between matches
and non-matches, as well as potentially ignoring common,
non-specific words that are not useful for discrimination de-
cisions. Our method also works with previous image clas-
sification neural networks, allowing the network to learn
its own features from the data, rather than learning to se-
lect from a number of pre-defined string similarity measures
chosen by the researcher. We also analysed several variants
of alternative string-map layouts, finding that the accuracy
of the disambiguation algorithm was highly robust to such
variation.

Our disambiguation algorithm would also be easily
adapted to other text-based record linkage problems such
author name disambiguation in scientific publications. The
algorithm could also potentially be adapted to process
records that contain both text and image data, by combin-
ing each record’s associated image with the abstract image
representation of its associated text in a single comparison-
map.

More broadly, our method of representing text strings as
abstract images provides a novel way of integrating image
processing with text processing. This has the potential to
allow image pattern recognition algorithms, such as image
classification neural networks, to be applied more broadly
to problems requiring text pattern recognition.

References
[1] B.-C. Björk and D. Solomon. Open access versus sub-

scription journals: a comparison of scientific impact. BMC
Medicine, 10(1):73, 2012. 1

[2] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun,
C. Moore, E. Säckinger, and R. Shah. Signature Verifica-
tion Using a Siamese Time Delay Neural Network. Interna-
tional Journal of Pattern Recognition and Artificial Intelli-
gence, 07(04):669–688, 1993. 2

[3] C. Gay, W. Latham, and C. Le Bas. Collective knowledge,
prolific inventors and the value of inventions: An empirical
study of French, German and British patents in the US, 1975-
1999. Economics of Innovation and New Technology, 17(1-
2):5–22, 2008. 1

[4] C. Ge, K. Huang, and I. P. L. Png. Engineer/scientist careers:
Patents, online profiles, and misclassification bias. Strategic
Management Journal, 37:232–253, 2016. 2

[5] B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The NBER
Patent Citation Data File: Lessons, Insights and Method-
ological Tools. National Bureau of Economic Research
Working Paper, 8498, 2001. 2

[6] K. Hoisl. Does mobility increase the productivity of inven-
tors? Journal of Technology Transfer, 34:212–225, 2007.
1

[7] J. Hu, J. Lu, and Y. P. Tan. Discriminative deep metric learn-
ing for face verification in the wild. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 1875–1882, 2014. 2

[8] M. a. Jaro. Advances in record-linkage methodology as ap-
plied to matching the 1985 census of Tampa, Florida. Jour-
nal of the American Statistical Association, 84(406):414–
420, 1989. 2

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. Proceedings of the
22nd ACM international conference on Multimedia, pages
675–678, 2014. 6

[10] K. Kim, M. Khabsa, and C. L. Giles. Random For-
est DBSCAN for USPTO Inventor Name Disambiguation.
arXiv:1602.01792, [cs.IR], 2016. 1, 2, 7, 10, 11

[11] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese Neural
Networks for One-Shot Image Recognition. Proceedings of
the 32nd International Conference on Machine Learning, 37,
2015. 2

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
geNet Classification with Deep Convolutional Neural Net-
works. Advances in Neural Information Processing Systems,
25:1097–1105, 2012. 2, 3, 5, 6

[13] V. I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. Soviet Physics Doklady,
10(8):707–710, 1966. 2

[14] G. C. Li, R. Lai, A. D’Amour, D. M. Doolin, Y. Sun, V. I.
Torvik, A. Z. Yu, and F. Lee. Disambiguation and co-
authorship networks of the U.S. patent inventor database
(1975-2010). Research Policy, 43(6):941–955, 2014. 1, 2, 7

[15] E. Miguélez and I. Gómez-Miguélez. Singling Out Individ-
ual Inventors from Patent Data. Research Institute of Applied
Economics Working Paper, 2011. 2

[16] G. Morrison, M. Riccaboni, and F. Pammolli. Disambigua-
tion of patent inventors and assignees using high-resolution
geolocation data. Scientific Data, 4:1–21, 2017. 2

[17] G. Navarro. A guided tour to approximate string matching.
ACM Computing Surveys, 33(1):31–88, 2001. 2

[18] M. Pezzoni, F. Lissoni, and G. Tarasconi. How to kill inven-
tors: testing the Massacrator algorithm for inventor disam-
biguation. Scientometrics, 101(1):477–504, 2014. 2

[19] J. Raffo and S. Lhuillery. How to play the ”Names Game”:
Patent retrieval comparing different heuristics. Research Pol-
icy, 38(10):1617–1627, 2009. 2

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision, 115(3):211–252, 2015. 2

[21] M. Trajtenberg, G. Shiff, and R. Melamed. The ”Names
Game”: Harnessing Inventors’ Patent Data for Economic Re-
search. National Bureau of Economic Research Working Pa-
per, 12479, 2006. 2

[22] S. L. Ventura, R. Nugent, and E. R. H. Fuchs. Seeing the
non-stars: (Some) sources of bias in past disambiguation ap-
proaches and a new public tool leveraging labeled records.
Research Policy, 44(9):1672–1701, 2015. 1, 2, 7, 8, 10

[23] W. E. Winkler. String Comparator Metrics and Enhanced De-
cision Rules in the Fellegi-Sunter Model of Record Linkage.
Proceedings of the American Statistical Association Section
on Survey Research Methods, 1990. 2

[24] G.-C. Yang, C. Liang, Z. Jing, D.-R. Wang, and H.-C. Zhang.
A Mixture Record Linkage Approach for US Patent Inven-
tor Disambiguation. Advanced Multimedia and Ubiquitous
Engineering. FutureTech 2017, MUE 2017. Lecture Notes in
Electrical Engineering, 448:331–338, 2017. 7, 8

[25] W. Yin, H. Schütze, B. Xiang, and B. Zhou. ABCNN:
Attention-Based Convolutional Neural Network for Model-
ing Sentence Pairs. Transactions of the Association for Com-
putational Linguistics, 4:259–272, 2016. 2

[26] S. Zagoruyko and N. Komodakis. Learning to Compare
Image Patches via Convolutional Neural Networks. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. 2

[27] J. Zbontar and Y. LeCun. Stereo Matching by Training a
Convolutional Neural Network to Compare Image Patches.
Journal of Machine Learning Research, 17:1–32, 2016. 2

A. Removal of duplicate records
It is sometimes obvious that two inventor name records

likely belong to the same individual, because the two
records contain several fields that are identical. For ex-
ample, if the last name, first name, city, and IPCs of two
different records are all exactly identical, it is highly likely
that the two records belong to the same individual. Remov-
ing these “duplicates” from the bulk data will make disam-
biguating the entire dataset more computationally tractable.

We remove duplicate records based on the following du-
plication keys:

duplicnkey_ipc = last_name + first_name
+ city + ’_’.join(ipcs)

duplicnkey_assignee = last_name + first_name
+ city + ’|’.join(assignees)

Duplicate records are identified firstly using the IPC dupli-
cation key (duplicnkey_ipc), then using the assignee
duplication key (duplicnkey_assignee). For a given
group of duplicate records sharing the same duplication key,
all records except for the first record to be processed are re-
moved from the bulk data. The first record then remains
within the bulk data to be processed by the disambigua-
tion algorithm, receiving a unique ID once the algorithm
has completed its run. That same ID is then assigned to
each removed record in the corresponding group of dupli-
cate records.

B. Blocking
The blocking procedure broadly involves grouping to-

gether inventor name records into “blocks” (or “bins”) us-
ing each inventor’s last name, and sometimes also their first
name. Latter parts of the algorithm will only assess pair-
wise comparisons within these blocks, never across differ-
ent blocks.

We firstly group patent-inventor name records together
by the first three letters of the last name (this first step is
identical to the initial stage of the blocking procedure used
by Ventura et al. [22]). However, some of the resulting
blocks contain very large numbers of records, and hence
large numbers of pairwise comparisons. To improve ef-
ficiency, we further divide such large blocks into smaller
blocks by progressively increasing the number of letters
used for blocking. That is, if the number of records within
a given block (nb) is above some threshold number (n̄b),
then the records within that block are separated into smaller
blocks according to the first four letters of the last name.
We then continue sub-dividing any blocks that still have
nb > n̄b, according to the first five letters of the last name,
then six letters, and so on. If all letters of the last name
have been used and any blocks still have nb > n̄b, then

we append a comma to the string and begin progressively
appending letters from the first name as well.

We use n̄b = 100 throughout this work, as initial testing
indicated that it produced a good balance between:

• computational efficiency: i.e. smaller n̄b leads to more
numerous, smaller bins, and hence fewer comparisons
(which are O(n2

b) for each bin) and less computation
time,

• accuracy: i.e. smaller n̄b reduces the number of un-
necessary comparisons between records (often non-
matched records) which should reduce the number of
false positives,

• recall: i.e. larger n̄b leads to fewer, larger bins, which
decreases the number of splitting errors, decreasing
false negatives,

Together with the deduplication procedure, this reduces the
number of pairwise comparisons from ⇡ 77 trillion before
the blocking procedure to ⇡ 112 million.

Note that since latter parts of the algorithm only as-
sess within-block pairwise comparisons and some inven-
tors’ sets of records may have been separated across two or
more different blocks, there is a maximum limit to the possi-
ble recall attainable by the disambiguation algorithm. After
running the blocking procedure on the labelled dataset, we
use known pairwise matches in the labelled data to estimate
this maximum limit to recall, obtaining the following val-
ues: 99.47% (E&S training data), 99.98% (E&S test data),
99.83 (IS training data), and 99.86 (IS test data).

B.1. More stringent binning procedures produce
poorer estimates of recall

Kim et al. [10] perform a simpler, more stringent block-
ing procedure than that described above, in which records
are assigned to different blocks based on the full last name
and first initial of first name. This more stringent “full last
name, first initial” blocking procedure will separate more
unique inventors’ matched records into different blocks.
Also, the larger the dataset, the more likely it is to con-
tain cases of unique inventors with large numbers of as-
sociated records that may become separated into different
blocks during the blocking procedure. Note that since the
number of pairwise links for a given unique inventor scales
with the number of associated records (n) as: n(n � 1)/2,
the number of broken pairwise links will have a dispropor-
tionately large contribution from any very prolific inventors
(large n) whose associated records become separated into
different blocks during blocking.

As an example of how this issue could potentially be
problematic for recall estimates, let us consider a labelled
dataset in which there are, say, only one or two cases where

very prolific inventors (with very large n) have their asso-
ciated records separated across blocks. We can expect such
cases to be more likely to appear in the training data rather
than the test data, simply because the training dataset com-
prises a larger random sample of the whole labelled dataset
(80% training versus 20% test). Thus estimates of recall
made using the test data may underestimate recall on the
larger training dataset. The underestimate may be even
more profound for the bulk data, as it is by far the largest of
the three datasets.

To investigate the extent of this issue under the Kim et
al. [10] blocking procedure, we applied the same “full last
name, first initial” blocking procedure to the IS and E&S
data (which were also used in the [10] study), comparing the
maximum possible recall obtainable on the test and training
datasets in each case. For the smaller IS dataset (6, 711
records), we find a 0.74% difference in maximum recall
(test: 99.28%, training: 98.54%) and for the E&S dataset
(41, 795 records) we find an even larger difference in maxi-
mum recall of 2.36% (test: 99.09%, training: 96.73%), and
we expect that this issue will also apply to the even larger
bulk dataset (12, 391, 977 records). While the result that
Kim et al. [10] obtained for recall on the E&S data (98.05%)
is consistent with the maximum possible recall that we com-
puted for the E&S test dataset (99.09%), it is not consistent
with our calculated value of the maximum possible recall
obtainable on the E&S training dataset (96.73%), as their
estimate lies above that value.

This suggests that when using a more stringent binning
procedure, recall estimates based on small test datasets will
likely provide a relatively poor representation of recall on
larger datasets — such as the training dataset — and will
likely provide an even poorer representation of recall on the
much larger bulk data. Given this issue, as well as the above
inconsistency between the Kim et al. [10] E&S recall esti-
mate and our calculated value of the maximum possible re-
call obtainable on the E&S dataset using their binning pro-
cedure, we exclude the Kim et al. [10] results when compar-
ing to recall and precision estimates from previous studies
in Section 5.3, Table 3.

Note that the above issue will inevitably apply to some
extent to all possible blocking procedures, but will be less
prevalent for less divisive blocking procedures. For exam-
ple, the issue appears to be less prevalent under our adap-
tive blocking procedure, as it has more consistency between
the maximum possible recall of the testing and training
datasets, for both the IS data (0.03% difference, i.e. test:
99.86%, training: 99.83%) and E&S data (0.51% differ-
ence, i.e. test: 99.98%, training: 99.47%). Note also that
there are no inconsistencies between these maximum possi-
ble recall values and any of the recall estimates we show in
our results (i.e. recall estimates from Tables 3–5 range from
96.84% to 98.77%).

C. Clustering algorithm to assign inventor
groups

Here we describe the clustering algorithm we use to con-
vert pairwise match/non-match probabilities into groups of
records each belonging to a single unique inventor. We
firstly convert each pairwise probability between the ith and
jth record (pij) into one of the binary classes (cij ; either
“match” or “non-match”) based on a threshold probability
value (p̄) as follows:

cij =

(
match , if pij > p̄

non-match , otherwise.
(6)

Note that the value we choose for the pairwise comparison
probability threshold, p̄, will have an effect on the trade-off
between precision and recall attained by the algorithm.

The inventor group linking algorithm then primarily in-
volves combining different sub-groups together into the one
group if they share enough links (pairwise matches). Within
a given block, the algorithm involves the following steps:

1. Order all patent-inventor name records by the number
of links they have to other records (i.e. the number of
asserted matches to other records), highest first.

2. Assign a UID to each isolated (non-matched) patent-
inventor name.

3. Assign records to inventor groups. That is, for a given
record, the corresponding inventor group initially com-
prises just the record itself and all records it is linked
(matched) to. Each of these linked records (nodes) are
kept in the current inventor group only if the number of
links (l) it has to the current group is > the number of
nodes in the group (n) times some threshold proportion
(l̄); i.e. if l > nl̄. This removes the most weakly-linked
records from each group (i.e. the nodes with fewest
links to their group), which are more likely to be false
positive matches. Note that the value we choose for
the linking threshold proportion, l̄, will have an effect
on the trade-off between precision and recall attained
by the algorithm. Also, note that due to Step 1, the
most strongly-linked nodes are processed first, which
ensures that insufficiently-linked nodes do not erro-
neously get assigned to a group simply because they
are processed at an earlier stage (when the number of
nodes in the group is still building up). Any outside-
group links — i.e. links to nodes that are not within
the current group — are also recorded during this step.

4. Repeat Step 2, because some records may have be-
come isolated (non-matched) following Step 3.

5. For each inventor group containing nodes with outside-
group links, combine it with any of those other groups

Figure S1. Random character order (string-maps). Here we
show the smaller string-map (top-left), IPC-map (top-right), and
larger string-map (bottom) we use for runs in which the character
order has been randomised.

if the number of links they share is greater than a spec-
ified threshold. In particular, for an inventor group
with nself records (nodes), we combine it with any
other group with nother nodes if the number of links
to that other group (l) satisfies both: l > l̄ nself, and:
l > l̄ nother.

6. For each resulting inventor group, assign an identi-
cal UID to all patent-inventor name records within the
group.

Once this clustering algorithm has been applied to each
block, every patent-inventor name has an associated UID,
and the disambiguation process is complete.

D. Random string-map layouts
Here we show the random string layouts analysed in Sec-

tion 5.4. Figure S1 shows the string-maps and IPC-map we
use for runs where characters are positioned using an iden-
tical pixel co-ordinate layout to the heuristic layouts shown
earlier in Section 4.1, but where the order of each character
has been randomised.

Figure S2 shows the string-map and IPC-map we use for
runs where both the pixel co-ordinate layout and character
positions have been randomised.

Figure S3 shows the comparison-map with random lay-
out and character order in which we use the smaller 5 ⇥ 5
pixel string-map (Figure 1 in Section 4.1) for co-inventors
and assignees, rather than the larger string-map (Figure 2 in
Section 4.1, left image). Figure S4 shows the record-map
layout associated with the comparison-map in Figure S3.

Figure S2. Random character order and layout (string-maps).
Here we show the smaller string-map (top-left; identical to the
top-left string-map in Figure S1), IPC-map (top-right), and larger
string-map (bottom) with both random character order and random
pixel co-ordinate layout.

Figure S3. Random character order and layout, small string-
maps (comparison-map). This shows the comparison-map used
for runs with smaller string-maps for co-inventors and assignees,
as well as random character order and random pixel co-ordinate
layout.

Figure S4. Record-map layout with smaller string-map for co-
inventors and assignees. The record-map layout associated with
the comparison-map in Figure S3.

