Entropy in strongly interacting Fermi gases

P. D. Drummond, H. Hu, Xia-ji Liu, Laura E. C. Rosales-Zarate

ACQAO COE, Swinburne University of Technology

Workshop on Frontiers in Ultracold Fermi Gases, Trieste 2011

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Outline

- 1 Entropy and thermodynamics in Fermi gases
- 2 State equation: Universality or scale-independence

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- 3 Homogeneous entropy and energy results
- 4 Calculating entropy from simulations
- 5 Entropy in bosonic cases
- 6 Entropy in Fermi gases

Ultracold atoms - a testbed for manybody quantum physics

ULTRALOW temperatures down to 50pK

FESTS MANY-BODY THEORY IN NEW REGIMES!

- Superchemistry: Stimulated molecule formation
- Entangled BEC: Spin-squeezing with spinor atoms
- Universality: Strongly interacting fermions
- Lattice gases: Hubbard model and superconductivity
- **Spin liquids**: Cooling to picoKelvins
- Quantum dynamics: Far from equilibrium

Ultracold atoms - a testbed for manybody quantum physics

ULTRALOW temperatures down to 50pK

TESTS MANY-BODY THEORY IN NEW REGIMES!

- Superchemistry: Stimulated molecule formation
- Entangled BEC: Spin-squeezing with spinor atoms
- Universality: Strongly interacting fermions
- Lattice gases: Hubbard model and superconductivity
- Spin liquids: Cooling to picoKelvins
- Quantum dynamics: Far from equilibrium

Ultracold Fermi experiments

ъ

Classical Thermometry

Precise energy input
 Entropy measurement
 Thermodynamics

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへで

Experimental Investigations of Thermodynamics

Experimental Energy

Energy from interacting gas

Potential energy is obtained from axial cloud size

(ロ) (部) (注) (注) (注)

Isentropic Thermometry [Thomas, PRL 98, 080402 (07)]

Isentropic sweep to the weak coupling BCS limit

モト・モート

F 4 (1) F 4

э

Noninteracting Entropy

From Thomas- Fermi Fit:_

"true" temperature (entropy) for non-interacting gas

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

More precise tests

Local pressure $P(\mu(z), T)$ inferred from density profiles

- Temperature determined using ⁷Li impurity.
- Chemical potential determined using the local density approximation
- Experimentalists measured a universal function

$$h[\zeta] = P(\mu, T)/P^{(1)}(\mu, T)$$

 $\zeta \equiv \exp(-\mu/k_B T)$

• $P^{(1)}(\mu, T) =$ pressure of ideal two-component Fermi gas S. Nascimbène, et. al, New J. Phys. 12, 103026 (2010). M. Horikoshi, et. al., Science 327, 442 (2010).

What are the theories?

The hamiltonian of the system can then be written as,

$$\mathscr{H} = \sum_{\mathbf{k}\sigma} \left(\varepsilon_{\mathbf{k}} - \mu \right) c_{\mathbf{k}\sigma}^{+} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{k}\mathbf{k}'\mathbf{q}} c_{\mathbf{k}+\mathbf{q}\uparrow}^{+} c_{\mathbf{k}'-\mathbf{q}\downarrow}^{+} c_{\mathbf{k}'\downarrow} c_{\mathbf{k}\uparrow}, \qquad (1)$$

where $\varepsilon_{\mathbf{k}} = \hbar^2 \mathbf{k}^2 / (2m)$ is the fermionic kinetic energy at wave number k, and

$$\frac{1}{U} = \frac{m}{4\pi\hbar^2 a_s} - \sum_{\mathbf{k}} \frac{1}{2\varepsilon_{\mathbf{k}}}$$
(2)

is the *bare* contact interaction renormalized in terms of the s-wave scattering length a_s .

Calculating Perturbation Theory

T-matrix can be schematically represented

$$t(Q) = U + UGGU + UGGUGGU + \cdots,$$

In the normal state, the ladder sum is calculated as,

$$t(Q) = \frac{U}{\left[1 + U\chi(Q)\right]}$$

Where $Q = (\mathbf{q}, i\nu_n)$, $K = (\mathbf{k}, i\omega_m)$, and \mathbf{q} and \mathbf{k} are wave vectors, while $\nu_n = 2n\pi k_B T$ and $\omega_m = (2n+1)\pi k_B T$ $(n = 0, \pm 1, \pm 2, \cdots)$ are bosonic and fermionic Matsubara frequencies.

Perturbation Theory Diagrams

Solid line = single-particle Green function ${\it G}$, dashed line = interaction ${\it U}.$

GPF $(G_0 G_0)$ vs Haussman (GG)

Different T-matrix theories use different Green's functions

$$\chi(Q) = \sum_{K} G_{\alpha}(K) G_{\beta}(Q-K),$$

and the self-energy,

$$\Sigma(K) = \sum_{Q} t(Q) G_{\gamma}(Q-K),$$

The subscripts α , β , and γ may be "0", indicating a non-interacting Green's function, or be absent, indicating an interacting Green's function, using the Dyson equation,

$$G(K) = G_0(K) / [1 - G_0(K)\Sigma(K)],$$

Evidence for universality: E vs S

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Evidence for universality: close-up

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Reduced temperature from $h(\zeta)$

Obtaining the reduced temperature

Need derivative of measured h function:

$$\left(\frac{T_F}{T}\right)^{3/2} = \frac{3\sqrt{\pi}}{4} \left[\tilde{n}^{(1)}(\zeta) h(\zeta) - \tilde{P}^{(1)}(\zeta) \zeta \frac{dh}{d\zeta} \right],$$

Dimensionless non-interacting density and pressure,

$$\tilde{n}^{(1)} \equiv \frac{n^{(1)}\lambda^3}{2} = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{dt\sqrt{t}}{(\zeta e^t + 1)},$$

$$\tilde{P}^{(1)} \equiv \frac{P^{(1)}k_B T \lambda^3}{2} = \frac{2}{\sqrt{\pi}} \int_0^\infty dt \sqrt{t} \ln\left(1 + \zeta^{-1} e^{-t}\right).$$

Universal Thermodynamic Functions from $h(\zeta)$

Calculating universal equations of state

$$\begin{aligned} \frac{\mu}{\varepsilon_F} &= -\frac{T}{T_F} \ln \zeta, \\ \frac{E}{N\varepsilon_F} &= \frac{9}{4} h(\zeta) \left(\frac{T}{T_F}\right)^{5/2} \int_0^\infty dt \sqrt{t} \ln \left(1 + \zeta^{-1} e^{-t}\right), \\ \frac{S}{Nk_B} &= \left(\frac{T_F}{T}\right) \left(\frac{5}{3} \frac{E}{N\varepsilon_F} - \frac{\mu}{\varepsilon_F}\right). \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Uniform Energy vs Experiment: GG vs G_0G_0 (GPF)

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

Uniform Entropy vs Experiment: GG vs G_0G_0 (GPF)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

High Temperature Virial Expansions

Virial expansions use exact two and three-body solutions

$$\Omega - \Omega^{(1)} = -\frac{2kT}{\lambda^3} \left[\Delta b_2 z^2 + \ldots + \Delta b_n z^n + \right],$$

where, $z = \exp(\mu/kT) = 1/\zeta$, $\Omega^{(1)}$ is the free particle thermodynamic potential

$$h_{pade} = rac{1 + \left[b_2^{(1)} + \Delta b_2 - \Delta b_3 / \Delta b_2
ight] \zeta^{-1}}{1 + \left[b_2^{(1)} - \Delta b_3 / \Delta b_2
ight] \zeta^{-1}}$$

and: $\Delta b_2 = 1/\sqrt{2}$, $\Delta b_3 = -0.355$.. [Liu et al, PRL 102, 160401 (2009)]

Energy vs Experiment: Virial

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @ ♪

Entropy vs Experiment: Virial

Calculating entropy from simulations

Entropy: a fundamental measure of information

- Measurable with ultra-cold atoms (John Thomas)
- Hard to check predictions of diagrammatic calculations

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

- Can we investigate entropic entanglement?
- Paradox can entropy change with time?

How can we simulate this directly?

Types of entropy

Shannon or von Neumann entropy

$$S = -Tr(\widehat{\rho}\ln\widehat{\rho})$$

Renyi entropy

$$lacksquare$$
 The Renyi entropy is: $\mathit{S}_2 = - \ln \mathit{Tr}\left(\widehat{
ho}^2
ight)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Phase-space expansions

Phase-space representations

$$\widehat{oldsymbol{
ho}} = \int P(oldsymbol{\lambda}) \widehat{\Lambda}(oldsymbol{\lambda}) doldsymbol{\lambda} \; ,$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

where:

- $P(\boldsymbol{\lambda})$ is a probability density
- lacksquare λ is a vector parameter in a general phase-space,
- $\widehat{\Lambda}(\lambda)$ is an operator basis.

Sampled Renyi entropy

Sampled distribution

$$\widehat{\rho} \approx \widehat{\rho}_{S} = \frac{1}{N} \sum_{j=1}^{N} \widehat{\Lambda}(\boldsymbol{\lambda}_{j}) .$$

Sampled RENYI entropy

•
$$S_2 \approx -\ln\left[\sum_{i,j=1}^{N} Tr\left(\widehat{\Lambda}(\boldsymbol{\lambda}_i)\widehat{\Lambda}(\boldsymbol{\lambda}'_j)\right)/N^2\right]$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bose and Fermi Representations

Property:	Ordering	Particle	Phase-space
Repn.		Statistics	Dimension
Р	Normal	Bose	Classical
W	Symmetric	Bose	Classical
Q	Antinormal	Bose	Classical
+P	Normal	Bose	Classical imes 2
G	Normal	Any	(Classical) ²

Gaussian phase-space distributions

Gaussian phase-space

• Gaussian basis,
$$\widehat{\Lambda}(\boldsymbol{\lambda}) =: \exp\left[-\delta \hat{a}^{\dagger} \underline{\boldsymbol{\mu}} \delta \hat{a}\right] : /\mathcal{N}$$

• $\underline{\mu}$ is a complex M imes M matrix so that $oldsymbol{\lambda} = \left| oldsymbol{lpha}, oldsymbol{eta}^\dagger, \underline{\mu}
ight|$,

うして ふゆう ふほう ふほう しょうく

- Positive distribution always exists Corney & PDD, PRB 73,125112 (06)
- Best current method for 2D Hubbard Aimi & Imada, J.Phys. Soc. Jpn 76, (07)

What are the Gaussian parameters physically?

How do we map observables to Gaussian parameters?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bosons
$$\underline{\boldsymbol{\mu}} = (\underline{\boldsymbol{l}} + \underline{\boldsymbol{n}}^T)^{-1}$$

$$\left\langle \widehat{a}_{i}^{\dagger} \widehat{a}_{j} \right\rangle = \left\langle \beta_{i}^{*} \alpha_{j} + n_{ij} \right\rangle_{P}$$

• Fermions
$$\underline{\mu} = (\underline{l} - \underline{n}^T)^{-1} - 2\underline{I}$$

$$\left\langle \widehat{a}_{i}^{\dagger} \widehat{a}_{j} \right\rangle = \left\langle n_{ij} \right\rangle_{P}$$

Example: Glauber-Sudarshan Phase-space

Definition using coherent states

$$\widehat{
ho} = \int P(lpha) \ket{lpha} ra{a} \ket{d^2 lpha}$$

Generates normal-ordered operator products

- Maps quantum states into 2M real coordinates: $\alpha = p + ix$,
- Advantage: No UV vacuum divergence
- Problem: Singular for entangled states

Example: Glauber-Sudarshan Phase-space

Definition using coherent states

$$\widehat{
ho} = \int P(lpha) \ket{lpha} ra{lpha} d^2 lpha$$

Generates normal-ordered operator products

- Maps quantum states into 2M real coordinates: $\alpha = p + ix$,
- Advantage: No UV vacuum divergence
- Problem: Singular for entangled states

Glauber-Sudarshan Phase-space

Inner product of two basis elements

$$Tr\left(\widehat{\Lambda}_{1}(\boldsymbol{\alpha})\widehat{\Lambda}_{1}(\boldsymbol{\alpha}')\right) = \exp\left[-\left|\boldsymbol{\alpha}-\boldsymbol{\alpha}'\right|^{2}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

Thermal case:
$$P(\alpha) = exp\left[-|\alpha|^2/n_{th}\right]$$

Free Bose gas entropy: $S_2 = \ln(1+2n_{th})$

Glauber-Sudarshan Phase-space

Inner product of two basis elements

$$Tr\left(\widehat{\Lambda}_{1}(\boldsymbol{\alpha})\widehat{\Lambda}_{1}(\boldsymbol{\alpha}')\right) = \exp\left[-\left|\boldsymbol{\alpha}-\boldsymbol{\alpha}'\right|^{2}\right]$$

Example

Thermal case:
$$P(\alpha) = exp\left[-|\alpha|^2/n_{th}\right]$$

Free Bose gas entropy: $S_2 = \ln(1+2n_{th})$

Sampled Renyi Entropy $(n_{th} = 0.1, 1, \dots 1000)$

Trace of fermionic Gaussian operator products

Define an un-normalized fermionic Gaussian operators,

$$\hat{\Lambda}_u\left(\underline{\mu}\right) =: e^{-\hat{a}^{\dagger}\underline{\mu}\hat{a}}:$$

Trace of two un-normalized fermionic Gaussian operators

•
$$F\left(\underline{\mu}, \underline{\nu}\right) = Tr\left[\hat{\Lambda}_{u}\left(\underline{\mu}\right)\hat{\Lambda}_{u}\left(\underline{\nu}\right)\right] = Tr\left[:e^{-\hat{a}^{\dagger}\underline{\mu}\hat{a}}::e^{-\hat{a}^{\dagger}\underline{\nu}\hat{a}}:\right]$$

• How do we evaluate this for arbitrary matrices μ and $\underline{\nu}$?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Grassmann Identities

Expand in Grassmann coherent states

- $|m{lpha}
 angle$ is a Grassmann coherent state iff $\hat{a}|m{lpha}
 angle=m{lpha}|m{lpha}
 angle$
- \bullet are a set of anticommuting Grassmann variables

(日) (中) (日) (日) (日) (日) (日)

- $Tr[\hat{O}] = \int d^{2M} \boldsymbol{\alpha} \langle -\boldsymbol{\alpha} | \hat{O} | \boldsymbol{\alpha} \rangle,$
- Identity operator: $\int d^{2M} \boldsymbol{\alpha} | \boldsymbol{\alpha} \rangle \langle \boldsymbol{\alpha} | = 1.$
- See: Cahill and Glauber, PRA59, 1538 (1999).

Grassmann Eigenvalues

Therefore:

$$\begin{array}{ll} \mathsf{F}\left(\underline{\boldsymbol{\mu}},\underline{\boldsymbol{\nu}}\right) &=& \displaystyle \frac{1}{\pi^{2M}}\int d\boldsymbol{\alpha}d\boldsymbol{\beta}\left\langle -\boldsymbol{\alpha}\right|:e^{-\hat{\boldsymbol{a}}^{\dagger}\underline{\boldsymbol{\mu}}\hat{\boldsymbol{a}}}:|\boldsymbol{\beta}\right\rangle \times \\ &\times\left\langle \boldsymbol{\beta}\right|:e^{-\hat{\boldsymbol{a}}^{\dagger}\underline{\boldsymbol{\nu}}\hat{\boldsymbol{a}}}:|\boldsymbol{\alpha}\right\rangle. \end{array}$$

Using $\hat{a} | \boldsymbol{\alpha} \rangle = \boldsymbol{\alpha} | \boldsymbol{\alpha} \rangle$

$$F\left(\underline{\boldsymbol{\mu}},\underline{\boldsymbol{\nu}}\right) = \int d\boldsymbol{\gamma} e^{\boldsymbol{\alpha}^{\dagger}\underline{\boldsymbol{\mu}}\boldsymbol{\beta} - \boldsymbol{\beta}^{\dagger}\underline{\boldsymbol{\nu}}\boldsymbol{\alpha} - \boldsymbol{\alpha}^{\dagger}\boldsymbol{\beta} + \boldsymbol{\beta}^{\dagger}\boldsymbol{\alpha}^{\dagger} - \left(\boldsymbol{\alpha}^{\dagger}\boldsymbol{\alpha} + \boldsymbol{\beta}^{\dagger}\boldsymbol{\beta}\right)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Gaussian integral over 2M Grassmann coordinates

Introducing double-dimension Grassmann vector :

$$\boldsymbol{\gamma} = \left[\begin{array}{c} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \end{array}
ight],$$

$$F\left(\underline{\mu},\underline{\nu}
ight) = \int d\mathbf{\gamma} e^{-\mathbf{\gamma}^{\dagger}\underline{\Gamma}\mathbf{\gamma}} = \det[\underline{\Gamma}]$$

Here we introduced

$$\underline{\mathbf{\Gamma}} = \begin{bmatrix} \underline{l} & \underline{l} - \underline{\boldsymbol{\mu}} \\ \underline{\boldsymbol{\nu}} - \underline{l} & \underline{l} \end{bmatrix}$$

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへで

Therefore: $F\left(\underline{\mu}, \underline{\nu}\right) = \det \left[I + \left(\underline{l} - \underline{\mu}\right)(\underline{l} - \underline{\nu})\right]$

Stochastic Green's functions

Normalized Gaussian operators in terms of Green's functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Normalized inner product:

,

•
$$Tr\left[\widehat{\Lambda}(\mathbf{m})\widehat{\Lambda}(\mathbf{n})\right] = \det\left[\underline{\widetilde{n}}\underline{\widetilde{m}} + \underline{n}\underline{m}\right]$$

Sampled Fermion Entropy

Direct way to calculate fermionic Renyi entropy

$$\hat{\rho} = \frac{1}{N} \sum_{i=1}^{N} \widehat{\Lambda}(n_i) .$$

Normalized inner product:

,

,

•
$$S_2 = -\ln\left[\frac{1}{N^2}\sum_{i,j=1}^N \det\left[\frac{\tilde{n}\tilde{n}'}{\tilde{n}'} + \underline{n}n'\right]\right]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Entropy is measurable, challenging to compute

Sensitive measure for different strong-coupling theories
 Current data requires differentiation - can we improve this?

Gaussian phase-space provides a newmethodology

Maps quantum field evolution into c-number equations
 Renyi entropy directly calculable via sampling

Entropy is measurable, challenging to compute

- Sensitive measure for different strong-coupling theories
- Current data requires differentiation can we improve this?

Gaussian phase-space provides a newmethodology

Maps quantum field evolution into c-number equations
 Renyi entropy directly calculable via sampling

CAOUS People

▲臣▶ 臣 のへの