Anharmonic Confinement Induced Resonances: Theory vs Experiment

Peter D. Drummond, Shi-Guo Peng*, Hui Hu, Xia-Ji Liu

CAOUS Centre, Swinburne University of Technology *Tsinghua University, Beijing

IQEC Sydney 2011

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

A Detective Story in Six Parts

- 1 Confinement Induced Resonance
- 2 HCIR: Theory vs experiment
- 3 ACIR: Theory vs experiment
- 4 Multiple ACIR resonances
- 5 Two-dimensional ACIR resonances

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

6 Summary

Harmonic Confinement Induced Resonance (HCIR)

Low-dimensional transverse resonance phenomena

Predicted by Olshanii - Phys. Rev. Lett. **81**, 938 (1998)

- Harmonic resonance: SINGLE internal excited state
- Like a Feshbach resonance for waveguides
- Allows quantum engineering by changing trap frequency

(ロ) (部) (注) (注) (注)

Harmonic Confinement Induced Resonance (HCIR)

Low-dimensional transverse resonance phenomena

Predicted by Olshanii - Phys. Rev. Lett. 81, 938 (1998)!

- Harmonic resonance: SINGLE internal excited state
- Like a Feshbach resonance for waveguides
- Allows quantum engineering by changing trap frequency

ション ふゆ くち くち くち くち

HCIR in ANISOTROPIC waveguide

Resonances at $\varepsilon = 0$, satisfy an integral equation:

$$\mathcal{F}_{e}(\varepsilon,0) = \int_{0}^{\infty} dt \left\{ \frac{\exp\left(\frac{t\varepsilon}{2}\right)\sqrt{\eta}}{\sqrt{t}} \times \left[\frac{1}{\sqrt{(1-e^{-\eta t})(1-e^{-t})}} - 1 \right] - \frac{1}{t^{3/2}} \right\} = -\frac{\sqrt{\pi}d}{a_{3D}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

■
$$d = \sqrt{2\hbar/m\omega_y}$$
, $\eta = \omega_x/\omega_y$,
■ $a_{3D} = 3D$ scattering length
■ Peng, et al, Phys. Rev. A **82**, 063633 (2010)

Physics: SINGLE resonance predicted in waveguides

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Innsbruck Cs Experiment: PRL 104, 153203 (2010)

Expected HCIR resonance vs anisotropy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Innsbruck CIR Measurements *don't* fit theory!

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ● ● ●

Large anisotropy: multiple resonances - also don't fit theory!

Two-dimensional HCIR resonance only for ATTRACTIVE case

Predicted by Petrov et al, PRL 84, 2551 (2000).

Experimental 2D resonance

- Observed resonance at Innsbruck for REPULSIVE case !!
- Similar observation with fermions by Vale group, SUT
- Resonance observed for ATTRACTIVE case at Cambridge!
- See: Frohlich et. al, PRL 106, 105301 (2011).

Two-dimensional HCIR resonance only for ATTRACTIVE case

Predicted by Petrov et al, PRL 84, 2551 (2000).

Experimental 2D resonance

- Observed resonance at Innsbruck for REPULSIVE case !!
- Similar observation with fermions by Vale group, SUT
- Resonance observed for ATTRACTIVE case at Cambridge!
- See: Frohlich et. al, PRL 106, 105301 (2011).

Mystery - what are these new resonances??

ACIR - anharmonic waveguide resonances

NEW COLD-ATOM QUANTUM TECHNOLOGIES!

Anharmonic confinement induced resonances - ACIR:

э

- Even order multiple resonances:
- Caused by QUARTIC nonlinearity
- Odd order multiple resonances:
- Caused by CUBIC nonlinearity

ACIR - anharmonic waveguide resonances

NEW COLD-ATOM QUANTUM TECHNOLOGIES!

Anharmonic confinement induced resonances - ACIR:

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- Even order multiple resonances:
- Caused by QUARTIC nonlinearity
- Odd order multiple resonances:
- Caused by CUBIC nonlinearity

Two types of confinement resonances

(a) ACIR: MANY resonances Sala et. al. arXiv:1104.1561; Peng et. al., arXiv:1107.2725 due to COM resonance of atom pairs (b) HCIR: SINGLE resonance Olshanii, PRL 81, 938 (1998)due to internal excitation of relative motion

Anharmonic confinement potential

For dipole trapping experiments with optical lattices, the trapping potential near a potential minimum at $\mathbf{r} = 0$ is of form:

$$U^{ext}(\mathbf{r}) = V_x(\mathbf{r})\sin^2\left(\frac{2\pi x}{\lambda_x}\right) + V_y(\mathbf{r})\sin^2\left(\frac{2\pi y}{\lambda_y}\right)$$
$$\approx \frac{1}{2}m\left[\omega_x^2 x^2 \left(1 + \frac{\alpha_x x^2}{d_x^2} + \frac{\mathbf{r} \cdot \nabla V_x}{V_x^0} + \dots\right) + \omega_y^2 y^2 \left(1 + \frac{\alpha_y y^2}{d_y^2} + \frac{\mathbf{r} \cdot \nabla V_y}{V_y^0} + \right)\right]$$

・ロト ・ 日 ・ モー・ モー・ うへぐ

Typical anharmonic parameters

Anharmonic quartic parameter:

 $\alpha_{x,y} = -\frac{1}{3} \left(2\pi d_{x,y}/\lambda \right)^2 = -8\pi^2 \hbar/ \left(3\lambda^2 m \omega_{x,y} \right)$

Experiment	¹³³ Cs	⁴⁰ K
Trap frequency ω	$2\pi imes 14.5$ kHz	$2\pi imes$ 80 kHz
Wavelength λ	$1.064 imes 10^{-6} m$	$1.064 imes 10^{-6} m$
Atomic mass <i>m</i>	2.22×10^{-25} kg	$0.6635 imes 10^{-25}$ kg
Length $d_{x,y}$	$0.102 \times 10^{-6} m$	$0.08 imes 10^{-6} m$
Anharmonicity $\alpha_{x,y}$	-0.121	-0.075

Theory with tightly bound molecules

Anharmonic energy in units of $\hbar \omega_y$

Two non-interacting atoms in a waveguide, $\eta = \omega_x/\omega_y$:

 $\varepsilon_a = \eta \left(1 + 3\alpha_x/8 \right) + (x \leftrightarrow y)$

Bound Feshbach molecule: \$\varepsilon_b = -\bar{h}/(ma_{3D}^2 \omega_y)\$
 Feshbach molecule in a waveguide:

$$\varepsilon_m = \varepsilon_b + \eta \left\{ N_x + \frac{1}{2} + \frac{3\alpha_x}{16} \left[N_x \left(N_x + 1 \right) + \frac{1}{2} \right] \right\} + x \leftrightarrow y$$

• ACIR resonance: $\varepsilon_m = \varepsilon_a$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

ACIR vs HCIR Resonance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

General theory of ACIR resonance

• Integral equation for bound state energy ε_b :

$$-d = \frac{a_{3D}}{\sqrt{\pi}} \int_0^\infty dt \left[\frac{\sqrt{\eta} \exp(\varepsilon_b t/2)}{\sqrt{t(1 - e^{-\eta t})(1 - e^{-t})}} - \frac{1}{t^{3/2}} \right].$$

Anharmonic ACIR resonance (N_x, N_y) when:

$$\varepsilon_{b} + 2\eta N_{x} + N_{y} + \alpha \left\{ \frac{3(N_{y}(1+N_{y}) + N_{x}(1+N_{x})) - 9}{16} - \frac{2N_{y} + 1 + \eta(2N_{x} + 1)}{32\varepsilon} + \frac{3(\eta^{2} + 1)}{320\varepsilon^{2}} \right\} = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Predicted ACIR resonance vs anisotropy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comparison of ACIR to experiment

(ロト 《聞 と 《臣 と 《臣 と 三臣 二のへで)

ACIR vs HCIR vs Experiment

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで、

Large anisotropy: theory vs. experiment

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Multiple resonances are an ACIR signature!

Identified 22 ACIR resonances at large anisotropy.

Also 8 unidentified resonances:

■ Internal resonance with anharmonic shifts?
■ Four atom mixing → pairs of molecules?

Multiple resonances are an ACIR signature!

Identified 22 ACIR resonances at large anisotropy.

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへの

Also 8 unidentified resonances:

Internal resonance with anharmonic shifts?

• Four atom mixing \rightarrow pairs of molecules?

Two-dimensional limit: *a*_{3D} vs anharmonicity

α

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two-dimensional limit: a_{3D} vs confinement a_{\perp}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

New type of low-dimensional nonlinear optics

Experiment in excellent agreement with ACIR theory!

- Anharmonic confinement induced COM resonances -ACIR:
 - Explains 35 newly observed resonances
 - Caused by QUARTIC and CUBIC anharmonic couplings
- Harmonic confinement induced internal resonances -HCIR:
 - Does not match any Innsbruck data! Molecular loss insensitive to HCIR?
- Unexplained resonances -
 - Anharmonic shifted internal resonance?Higher order 4-body anharmonic resonance?

New type of low-dimensional nonlinear optics

Experiment in excellent agreement with ACIR theory!

- Anharmonic confinement induced COM resonances -ACIR:
 - Explains 35 newly observed resonances
 - Caused by QUARTIC and CUBIC anharmonic couplings
- Harmonic confinement induced internal resonances -HCIR:
 - Does not match any Innsbruck data! Molecular loss insensitive to HCIR?
- Unexplained resonances -
 - Anharmonic shifted internal resonance?
 - Higher order 4-body anharmonic resonance?

CAOUS People

