A new method for tackling the stochastic dynamics of viral infection

Timothy G. Vaughan ${ }^{1}$
Peter D. Drummond ${ }^{1} \quad$ Alexei J. Drummond ${ }^{2}$
${ }^{1}$ Swinburne University of Technology, Melbourne, Australia
${ }^{2}$ The University of Auckland, Auckland, New Zealand

Australia and New Zealand Mathematics Convention, 2008

The Human Immunodeficiency Virus

- First isolated in 1983 by Franscoise Barre-Sinoussi and Luc Montagnier, for which they received half of this year's Nobel Prize in Medicine.

The Human Immunodeficiency Virus

- Genome $\simeq 10^{4}$ bases long - equivalent to just under 2.5 kB .

The Human Immunodeficiency Virus

- Genome $\simeq 10^{4}$ bases long - equivalent to just under 2.5 kB .
- Responsible for the deaths of over 2 million people in 2007. (UNAIDS/WHO)

The HIV infection process

The HIV infection time-couse

Primary

Deterministic models of infection dynamics

- Many deterministic models of HIV infection dynamics have been suggested. For example, Perelson et al. (1993), Schenzle (1994), Phillips et al. (1996), Nowak et al. (1996).

Deterministic models of infection dynamics

- Many deterministic models of HIV infection dynamics have been suggested. For example, Perelson et al. (1993), Schenzle (1994), Phillips et al. (1996), Nowak et al. (1996).
- Generally similar to the Lotka-Volterra model of preditor/prey interaction.

Deterministic models of infection dynamics

- Many deterministic models of HIV infection dynamics have been suggested. For example, Perelson et al. (1993), Schenzle (1994), Phillips et al. (1996), Nowak et al. (1996).
- Generally similar to the Lotka-Volterra model of preditor/prey interaction.
- Successfully reproduce the macroscopic behaviour of the infection dynamics.

Deterministic models of infection dynamics

- Many deterministic models of HIV infection dynamics have been suggested. For example, Perelson et al. (1993), Schenzle (1994), Phillips et al. (1996), Nowak et al. (1996).
- Generally similar to the Lotka-Volterra model of preditor/prey interaction.
- Successfully reproduce the macroscopic behaviour of the infection dynamics.

BUT

On perceptable timescales, the processes involved in viral infection are fundamentally stochastic and can lead to the development of non-zero correlations between subpopulations.

Deterministic models of infection dynamics

- Many deterministic models of HIV infection dynamics have been suggested. For example, Perelson et al. (1993), Schenzle (1994), Phillips et al. (1996), Nowak et al. (1996).
- Generally similar to the Lotka-Volterra model of preditor/prey interaction.
- Successfully reproduce the macroscopic behaviour of the infection dynamics.

BUT

On perceptable timescales, the processes involved in viral infection are fundamentally stochastic and can lead to the development of non-zero correlations between subpopulations.

These correlations are completely ignored by deterministic models.

Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic models are most appropriately expressed as birth/death master equations.

Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic models are most appropriately expressed as birth/death master equations.

These can be treated via:
(1) Analytical solution

Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic models are most appropriately expressed as birth/death master equations.

These can be treated via:
(1) Analytical solution

- Possible only for very simple models

Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic models are most appropriately expressed as birth/death master equations.

These can be treated via:
(1) Analytical solution

- Possible only for very simple models
(2) Exact numerical solution using stochastic simulation algorithms

Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic models are most appropriately expressed as birth/death master equations.

These can be treated via:
(1) Analytical solution

- Possible only for very simple models
(2) Exact numerical solution using stochastic simulation algorithms
- Complexity increasing function of population size

Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic models are most appropriately expressed as birth/death master equations.

These can be treated via:
(1) Analytical solution

- Possible only for very simple models
(2) Exact numerical solution using stochastic simulation algorithms
- Complexity increasing function of population size
(3) Approximate analytical or numerical solution via Kramers-Moyal or van Kampen expansions

Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic models are most appropriately expressed as birth/death master equations.

These can be treated via:
(1) Analytical solution

- Possible only for very simple models
(2) Exact numerical solution using stochastic simulation algorithms
- Complexity increasing function of population size
(3) Approximate analytical or numerical solution via Kramers-Moyal or van Kampen expansions
- Not always appropriate

Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic models are most appropriately expressed as birth/death master equations.

These can be treated via:
(1) Analytical solution

- Possible only for very simple models
(2) Exact numerical solution using stochastic simulation algorithms
- Complexity increasing function of population size
(3) Approximate analytical or numerical solution via Kramers-Moyal or van Kampen expansions
- Not always appropriate

Need a systematic scalable approach to deal with the large populations present in viral infections.

The Poisson Representation

Gardiner, Chaturvedi (1977)

- A probability distribution over discrete variables can be expressed in terms of an over-complete set of Poissonian basis functions:

$$
\begin{equation*}
P(\mathbf{N}, t)=\int d^{2 M} \mathbf{x} f(\mathbf{x}, t) p_{0}(\mathbf{x} ; \mathbf{N}) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{0}(\mathbf{x} ; \mathbf{N})=\prod_{j=1}^{M} e^{-x_{j}}\left(\frac{x_{j}^{N_{j}}}{N_{j}!}\right) \tag{2}
\end{equation*}
$$

The Poisson Representation

Gardiner, Chaturvedi (1977)

- A probability distribution over discrete variables can be expressed in terms of an over-complete set of Poissonian basis functions:

$$
\begin{equation*}
P(\mathbf{N}, t)=\int d^{2 M} \mathbf{x} f(\mathbf{x}, t) p_{0}(\mathbf{x} ; \mathbf{N}) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{0}(\mathbf{x} ; \mathbf{N})=\prod_{j=1}^{M} e^{-x_{j}}\left(\frac{x_{j}^{N_{j}}}{N_{j}!}\right) \tag{2}
\end{equation*}
$$

- For binary reaction processes, $f(\mathbf{x}, t)$ obeys a Fokker-Planck equation.

The Poisson Representation

Gardiner, Chaturvedi (1977)

- A probability distribution over discrete variables can be expressed in terms of an over-complete set of Poissonian basis functions:

$$
\begin{equation*}
P(\mathbf{N}, t)=\int d^{2 M} \mathbf{x} f(\mathbf{x}, t) p_{0}(\mathbf{x} ; \mathbf{N}) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{0}(\mathbf{x} ; \mathbf{N})=\prod_{j=1}^{M} e^{-x_{j}}\left(\frac{x_{j}^{N_{j}}}{N_{j}!}\right) \tag{2}
\end{equation*}
$$

- For binary reaction processes, $f(\mathbf{x}, t)$ obeys a Fokker-Planck equation.

The dynamics of many birth/death master equations can be exactly described by diffusion processes!

The Poisson Representation: Traps for young players

Caution must be exercised when using this technique for the following reasons:

The Poisson Representation: Traps for young players

Caution must be exercised when using this technique for the following reasons:
(1) The assumption that the boundary terms of $f(\mathbf{x}, t)$ vanish is not valid in all cases.

The Poisson Representation: Traps for young players

Caution must be exercised when using this technique for the following reasons:
(1) The assumption that the boundary terms of $f(\mathbf{x}, t)$ vanish is not valid in all cases.
Can utilise the non-uniqueness of the expansion to ensure distribution remains compact. Drummond, Eur. Phys. J. B (2004)

The Poisson Representation: Traps for young players

Caution must be exercised when using this technique for the following reasons:
(1) The assumption that the boundary terms of $f(\mathbf{x}, t)$ vanish is not valid in all cases.
Can utilise the non-uniqueness of the expansion to ensure distribution remains compact. Drummond, Eur. Phys. J. B (2004)
(2) Broad distributions in x can be difficult to sample accurately with finite ensembles of stochastic trajectories.

The Poisson Representation: Traps for young players

Caution must be exercised when using this technique for the following reasons:
(1) The assumption that the boundary terms of $f(\mathbf{x}, t)$ vanish is not valid in all cases.
Can utilise the non-uniqueness of the expansion to ensure distribution remains compact. Drummond, Eur. Phys. J. B (2004)
(2) Broad distributions in \mathbf{x} can be difficult to sample accurately with finite ensembles of stochastic trajectories.
Can exploit the spherical symmetry of the distribution tails and neglect runaway trajectories without penalty.

The Poisson Representation: Traps for young players

Caution must be exercised when using this technique for the following reasons:
(1) The assumption that the boundary terms of $f(\mathbf{x}, t)$ vanish is not valid in all cases.
Can utilise the non-uniqueness of the expansion to ensure distribution remains compact. Drummond, Eur. Phys. J. B (2004)
(2) Broad distributions in x can be difficult to sample accurately with finite ensembles of stochastic trajectories.
Can exploit the spherical symmetry of the distribution tails and neglect runaway trajectories without penalty.
(3) Numerical integration of stochastic differential equations equivalent to the FPE may be fundamentally difficult due to slow convergence.

The Poisson Representation: Traps for young players

Caution must be exercised when using this technique for the following reasons:
(1) The assumption that the boundary terms of $f(\mathbf{x}, t)$ vanish is not valid in all cases.
Can utilise the non-uniqueness of the expansion to ensure distribution remains compact. Drummond, Eur. Phys. J. B (2004)
(2) Broad distributions in x can be difficult to sample accurately with finite ensembles of stochastic trajectories.
Can exploit the spherical symmetry of the distribution tails and neglect runaway trajectories without penalty.
(3) Numerical integration of stochastic differential equations equivalent to the FPE may be fundamentally difficult due to slow convergence. Must employ sophisticated integration techniques in these cases.

Example 1: A simple stochastic model of HIV infection

- Begin with the deterministic model due to Nowak and Bangham (1996):

$$
\dot{x}=\lambda-d x-\beta x v
$$

Example 1: A simple stochastic model of HIV infection

- Begin with the deterministic model due to Nowak and Bangham (1996):

$$
\begin{aligned}
\dot{x} & =\lambda-d x-\beta \times v \\
\dot{y} & =\beta \times v-a y
\end{aligned}
$$

Example 1: A simple stochastic model of HIV infection

- Begin with the deterministic model due to Nowak and Bangham (1996):

$$
\begin{aligned}
\dot{x} & =\lambda-d x-\beta x v \\
\dot{y} & =\beta x v-a y \\
\dot{v} & =k y-u v-\beta x v
\end{aligned}
$$

Example 1: A simple stochastic model of HIV infection

- Begin with the deterministic model due to Nowak and Bangham (1996):

$$
\begin{aligned}
\dot{x} & =\lambda-d x-\beta x v \\
\dot{y} & =\beta x v-a y \\
\dot{v} & =k y-u v-\beta x v
\end{aligned}
$$

- Can express this in terms of the following binary reactions:

Example 1: A simple stochastic model of HIV infection

- Begin with the deterministic model due to Nowak and Bangham (1996):

$$
\begin{aligned}
\dot{x} & =\lambda-d x-\beta x v \\
\dot{y} & =\beta x v-a y \\
\dot{v} & =k y-u v-\beta x v
\end{aligned}
$$

- Can express this in terms of the following binary reactions:

T cell birth: $0 \xrightarrow{\lambda} X$

Example 1: A simple stochastic model of HIV infection

- Begin with the deterministic model due to Nowak and Bangham (1996):

$$
\begin{aligned}
\dot{x} & =\lambda-d x-\beta x v \\
\dot{y} & =\beta x v-a y \\
\dot{v} & =k y-u v-\beta x v
\end{aligned}
$$

- Can express this in terms of the following binary reactions:

T cell birth: $0 \xrightarrow{\lambda} X$ Infection: $X+V \xrightarrow{\beta} Y$

Example 1: A simple stochastic model of HIV infection

- Begin with the deterministic model due to Nowak and Bangham (1996):

$$
\begin{aligned}
\dot{x} & =\lambda-d x-\beta x v \\
\dot{y} & =\beta x v-a y \\
\dot{v} & =k y-u v-\beta x v
\end{aligned}
$$

- Can express this in terms of the following binary reactions:

T cell birth: $0 \xrightarrow{\lambda} X$ Infection: $X+V \xrightarrow{\beta} Y$
Virion production: $Y \xrightarrow{k} Y+V$

Example 1: A simple stochastic model of HIV infection

- Begin with the deterministic model due to Nowak and Bangham (1996):

$$
\begin{aligned}
\dot{x} & =\lambda-d x-\beta x v \\
\dot{y} & =\beta x v-a y \\
\dot{v} & =k y-u v-\beta x v
\end{aligned}
$$

- Can express this in terms of the following binary reactions:

T cell birth: $0 \xrightarrow{\lambda} X$ Infection: $X+V \xrightarrow{\beta} Y$
Virion production: $Y \xrightarrow{k} Y+V$
Death processes: $X \xrightarrow{d} 0$
$Y \xrightarrow{a} 0$
$V \xrightarrow{u} 0$

Example 1: Deriving the Poisson equations

The birth/death master equation takes the following linear form:

$$
\dot{P}\left(N_{X}, N_{Y}, N_{V}, t\right)=\{\hat{L} \vec{P}(t)\}_{N_{X}, N_{Y}, N_{V}}
$$

Example 1: Deriving the Poisson equations

The birth/death master equation takes the following linear form:

$$
\dot{P}\left(N_{X}, N_{Y}, N_{V}, t\right)=\{\hat{L} \vec{P}(t)\}_{N_{X}, N_{Y}, N_{V}}
$$

The Poisson representation then yields the following expansion:
$\int d^{2} x d^{2} y d^{2} v \dot{f}(x, y, v, t) \vec{p}_{0}(x, y, v)=\int d^{2} x d^{2} y d^{2} v f(x, y, v, t) \mathcal{L} \vec{p}_{0}(x, y, v)$

Example 1: Deriving the Poisson equations

The birth/death master equation takes the following linear form:

$$
\dot{P}\left(N_{X}, N_{Y}, N_{V}, t\right)=\{\hat{L} \vec{P}(t)\}_{N_{X}, N_{Y}, N_{V}}
$$

The Poisson representation then yields the following expansion:
$\int d^{2} x d^{2} y d^{2} v \dot{f}(x, y, v, t) \vec{p}_{0}(x, y, v)=\int d^{2} x d^{2} y d^{2} v f(x, y, v, t) \mathcal{L} \vec{p}_{0}(x, y, v)$
Integrating by parts yields an FPE, equivalent to the following Itô SDEs:

$$
\begin{aligned}
d x= & (\lambda-d x-\beta \times v) d t+\frac{x}{\sqrt{2}}\left(i d W_{1}^{\prime}(t)-d W_{2}^{\prime}(t)\right) \\
d y= & (\beta x v-a y) d t+\sqrt{\frac{k y}{2}}\left(d W_{1}^{P}(t)+i d W_{2}^{P}(t)\right) \\
d v= & (k y-u v-\beta x v) d t+\frac{\beta v}{\sqrt{2}}\left(i d W_{1}^{\prime}(t)+d W_{2}^{\prime}(t)\right) \\
& +\sqrt{\frac{k y}{2}}\left(d W_{1}^{P}(t)-i d W_{2}^{P}(t)\right)
\end{aligned}
$$

Example 1: Results - Mean population sizes

- Dynamics of means achieve perfect agreement with SSA results. (Model parameters from Nowak and May, (2000).)

Example 1: Results - Infected cell / virion correlations

- Covariance between N_{Y} and N_{V} in close agreement with SSA result, given error bounds due to finite ensemble sizes.

Example 2: Modelling HIV infection with mutation

- Both reverse and forward transcription processes are error-prone recent experiments indicate that each replication has a $\sim 20 \%$ chance of introducing a mutation. Keele et al., PNAS (2008)

Example 2: Modelling HIV infection with mutation

- Both reverse and forward transcription processes are error-prone recent experiments indicate that each replication has a $\sim 20 \%$ chance of introducing a mutation. Keele et al., PNAS (2008)
- This introduces a huge computational problem, even if we restrict mutations to highly variable region of the gene coding for the envelope protein, which is ~ 30 bases long: $\sim 10^{20}$ distinct viral populations!

Example 2: Modelling HIV infection with mutation

- Both reverse and forward transcription processes are error-prone recent experiments indicate that each replication has a $\sim 20 \%$ chance of introducing a mutation. Keele et al., PNAS (2008)
- This introduces a huge computational problem, even if we restrict mutations to highly variable region of the gene coding for the envelope protein, which is ~ 30 bases long: $\sim 10^{20}$ distinct viral populations!
- Poisson approach will allow us to focus resources on this aspect of the stochastic HIV dynamics, rather than worrying about population size.

Example 2: Modelling HIV infection with mutation

Introduce the possibility of reverse transcription errors:

$$
\begin{aligned}
X+V_{i} & \xrightarrow{\beta_{i} \mu_{j i}} Y_{j} \\
Y_{i} & \xrightarrow{k_{i}} Y_{i}+V_{i}
\end{aligned}
$$

Example 2: Modelling HIV infection with mutation

Introduce the possibility of reverse transcription errors:

$$
\begin{aligned}
X+V_{i} & \xrightarrow{\beta_{i} \mu_{j i}} \\
Y_{i} & Y_{j} \\
k_{i} & Y_{i}+V_{i}
\end{aligned}
$$

This leads to the following stochastic quasi-species-like equations:

$$
\begin{aligned}
d x= & \left(\lambda-d x-\sum_{j} \beta_{j} v_{j} x\right) d t+\frac{x}{\sqrt{2}}\left(i d W_{1}^{\prime}(t)-d W_{2}^{\prime}(t)\right) \\
d y_{i}= & \left(\sum_{j} \beta_{j} \mu_{i j} x-a_{i} y_{i}\right) d t+\sqrt{\frac{k_{i} y_{i}}{2}}\left(d W_{1, i}^{P}+i d W_{2, i}^{P}\right) \\
d v_{i}= & \left(k_{i} y_{i}-u_{i} v_{i}-\beta_{i} v_{i} x\right) d t+\frac{\beta_{i} v_{i}}{\sqrt{2}}\left(i d W_{1}^{\prime}(t)+d W_{2}^{\prime}(t)\right) \\
& +\sqrt{\frac{k_{i} y_{i}}{2}}\left(d W_{1, i}^{P}(t)-i d W_{2, i}^{P}(t)\right)
\end{aligned}
$$

Example 2: Results - Viral population diversity

- As a preliminary test, consider a 10 bit (1024 allele) highly variable region in the absence of selection and with a 50% probability of RT-induced single point mutation.

Example 2: Results - Viral population diversity

- As a preliminary test, consider a 10 bit (1024 allele) highly variable region in the absence of selection and with a 50% probability of RT-induced single point mutation.
- Initially pure population and all other parameters as in Example 1.

Example 2: Results - Viral population diversity

- As a preliminary test, consider a 10 bit (1024 allele) highly variable region in the absence of selection and with a 50% probability of RT-induced single point mutation.
- Initially pure population and all other parameters as in Example 1.

Example 2: Results - Correlated viral fluctuations

- Can observe the development of negative correlations between viral populations separated by a single point mutation:

Conclusions

(1) The Poisson representation yields an interesting new approach to tackling stochastic viral dynamics numerically, especially because...

Conclusions

(1) The Poisson representation yields an interesting new approach to tackling stochastic viral dynamics numerically, especially because...
(2) ... complexity of numerical solution does not appear linked to population size.

Conclusions

(1) The Poisson representation yields an interesting new approach to tackling stochastic viral dynamics numerically, especially because...
(2) ... complexity of numerical solution does not appear linked to population size.
(3) The approach should thus allow us to focus our resources on dealing with the large state space of mutating viral populations.

Conclusions

(1) The Poisson representation yields an interesting new approach to tackling stochastic viral dynamics numerically, especially because...
(2) ... complexity of numerical solution does not appear linked to population size.
(3) The approach should thus allow us to focus our resources on dealing with the large state space of mutating viral populations.

Thank-you!

