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The Human Immunodeficiency Virus

First isolated in 1983 by Franscoise Barre-Sinoussi and
Luc Montagnier, for which they received half of this year’s Nobel
Prize in Medicine.

Vaughan et al. (SUT and UA) ANZMC 2008 2 / 18



The Human Immunodeficiency Virus

Vaughan et al. (SUT and UA) ANZMC 2008 3 / 18



The Human Immunodeficiency Virus

Vaughan et al. (SUT and UA) ANZMC 2008 3 / 18



The Human Immunodeficiency Virus

Vaughan et al. (SUT and UA) ANZMC 2008 3 / 18



The Human Immunodeficiency Virus

Vaughan et al. (SUT and UA) ANZMC 2008 3 / 18



The Human Immunodeficiency Virus

Vaughan et al. (SUT and UA) ANZMC 2008 3 / 18



The Human Immunodeficiency Virus

Genome ≃ 104 bases long – equivalent to just under 2.5kB.

Vaughan et al. (SUT and UA) ANZMC 2008 3 / 18



The Human Immunodeficiency Virus

Genome ≃ 104 bases long – equivalent to just under 2.5kB.

Responsible for the deaths of over 2 million people in 2007.
(UNAIDS/WHO)
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The HIV infection process
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The HIV infection time-couse
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Deterministic models of infection dynamics

Many deterministic models of HIV infection dynamics have been
suggested. For example, Perelson et al. (1993), Schenzle (1994),
Phillips et al. (1996), Nowak et al. (1996).
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Many deterministic models of HIV infection dynamics have been
suggested. For example, Perelson et al. (1993), Schenzle (1994),
Phillips et al. (1996), Nowak et al. (1996).

Generally similar to the Lotka-Volterra model of preditor/prey
interaction.

Successfully reproduce the macroscopic behaviour of the infection
dynamics.

BUT

On perceptable timescales, the processes involved in viral infection are
fundamentally stochastic and can lead to the development of non-zero
correlations between subpopulations.

These correlations are completely ignored by deterministic models.
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Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic
models are most appropriately expressed as birth/death master equations.
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Stochastic approaches

Assuming that the Markov assumption is valid, continuous time stochastic
models are most appropriately expressed as birth/death master equations.

These can be treated via:
1 Analytical solution

Possible only for very simple models

2 Exact numerical solution using stochastic simulation algorithms

Complexity increasing function of population size

3 Approximate analytical or numerical solution via Kramers-Moyal or
van Kampen expansions

Not always appropriate

Need a systematic scalable approach to deal with the large populations
present in viral infections.
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The Poisson Representation

Gardiner, Chaturvedi (1977)

A probability distribution over discrete variables can be expressed in
terms of an over-complete set of Poissonian basis functions:

P(N, t) =

∫

d2M
xf (x, t)p0(x;N) (1)

where

p0(x;N) =
M
∏

j=1

e−xj





x
Nj

j

Nj !



 (2)
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e−xj





x
Nj

j

Nj !



 (2)

For binary reaction processes, f (x, t) obeys a Fokker-Planck equation.

The dynamics of many birth/death master equations can be exactly

described by diffusion processes!
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The Poisson Representation: Traps for young players

Caution must be exercised when using this technique for the following
reasons:
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Caution must be exercised when using this technique for the following
reasons:

1 The assumption that the boundary terms of f (x, t) vanish is not valid
in all cases.
Can utilise the non-uniqueness of the expansion to ensure distribution
remains compact. Drummond, Eur. Phys. J. B (2004)

2 Broad distributions in x can be difficult to sample accurately with
finite ensembles of stochastic trajectories.
Can exploit the spherical symmetry of the distribution tails and
neglect runaway trajectories without penalty.

3 Numerical integration of stochastic differential equations equivalent
to the FPE may be fundamentally difficult due to slow convergence.
Must employ sophisticated integration techniques in these cases.
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Example 1: A simple stochastic model of HIV infection

Begin with the deterministic model due to Nowak and Bangham
(1996):

ẋ = λ − dx − βxv
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ẋ = λ − dx − βxv
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Example 1: A simple stochastic model of HIV infection

Begin with the deterministic model due to Nowak and Bangham
(1996):

ẋ = λ − dx − βxv

ẏ = βxv − ay

v̇ = ky − uv − βxv

Can express this in terms of the following binary reactions:

T cell birth: 0
λ−→ X

Infection: X + V
β−→ Y

Virion production: Y
k−→ Y + V

Death processes: X
d−→ 0

Y
a−→ 0

V
u−→ 0
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Example 1: Deriving the Poisson equations

The birth/death master equation takes the following linear form:

Ṗ(NX , NY , NV , t) = {L̂~P(t)}NX ,NY ,NV
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Ṗ(NX , NY , NV , t) = {L̂~P(t)}NX ,NY ,NV

The Poisson representation then yields the following expansion:
∫

d2xd2yd2v ḟ (x , y , v , t)~p0(x , y , v) =

∫

d2xd2yd2vf (x , y , v , t)L~p0(x , y , v)

Integrating by parts yields an FPE, equivalent to the following Itô SDEs:

dx = (λ − dx − βxv) dt +
x√
2

(

idW I
1 (t) − dW I

2 (t)
)

dy = (βxv − ay) dt +

√

ky

2

(

dW P
1 (t) + idW P

2 (t)
)

dv = (ky − uv − βxv) dt +
βv√

2

(

idW I
1 (t) + dW I

2 (t)
)

+

√

ky

2

(

dW P
1 (t) − idW P

2 (t)
)
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Example 1: Results – Mean population sizes

Dynamics of means achieve perfect agreement with SSA results.
(Model parameters from Nowak and May, (2000).)
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Example 1: Results – Infected cell / virion correlations

Covariance between NY and NV in close agreement with SSA result,
given error bounds due to finite ensemble sizes.
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Example 2: Modelling HIV infection with mutation

Both reverse and forward transcription processes are error-prone –
recent experiments indicate that each replication has a ∼ 20% chance
of introducing a mutation. Keele et al., PNAS (2008)
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Both reverse and forward transcription processes are error-prone –
recent experiments indicate that each replication has a ∼ 20% chance
of introducing a mutation. Keele et al., PNAS (2008)

This introduces a huge computational problem, even if we restrict
mutations to highly variable region of the gene coding for the envelope
protein, which is ∼ 30 bases long: ∼ 1020 distinct viral populations!

Poisson approach will allow us to focus resources on this aspect of the
stochastic HIV dynamics, rather than worrying about population size.
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Example 2: Modelling HIV infection with mutation

Introduce the possibility of reverse transcription errors:

X + V i

βiµji−→ Y j

Y i
ki−→ Y i + V i
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Example 2: Modelling HIV infection with mutation

Introduce the possibility of reverse transcription errors:

X + V i

βiµji−→ Y j

Y i
ki−→ Y i + V i

This leads to the following stochastic quasi-species-like equations:

dx = (λ − dx −
∑

j

βjv jx)dt +
x√
2

(

idW I
1 (t) − dW I

2 (t)
)

dy i = (
∑

j

βjµijx − aiy i )dt +

√

kiy i

2

(

dW P
1,i + idW P

2,i

)

dv i = (kiy i − uiv i − βiv ix)dt +
βiv i√

2

(

idW I
1 (t) + dW I

2 (t)
)

+

√

kiy i

2

(

dW P
1,i (t) − idW P

2,i (t)
)

Vaughan et al. (SUT and UA) ANZMC 2008 15 / 18



Example 2: Results - Viral population diversity

As a preliminary test, consider a 10 bit (1024 allele) highly variable
region in the absence of selection and with a 50% probability of
RT-induced single point mutation.
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Example 2: Results - Correlated viral fluctuations

Can observe the development of negative correlations between viral
populations separated by a single point mutation:
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tackling stochastic viral dynamics numerically, especially because. . .
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Conclusions

1 The Poisson representation yields an interesting new approach to
tackling stochastic viral dynamics numerically, especially because. . .

2 . . . complexity of numerical solution does not appear linked to
population size.

3 The approach should thus allow us to focus our resources on dealing
with the large state space of mutating viral populations.

Thank-you!
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